SPOJ - OTOCI LCT
OTOCI
Time Limit: 1 Sec
Memory Limit: 256 MB
题目连接
http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18141
Description
Some time ago Mirko founded a new tourist agency named "Dreams of Ice". The agency purchased N icy islands near the South Pole and now offers excursions. Especially popular are the emperor penguins, which can be found in large numbers on the islands.
Mirko's agency has become a huge hit; so big that it is no longer cost-effective to use boats for the excursions. The agency will build bridges between islands and transport tourists by buses. Mirko wants to introduce a computer program to manage the bridge building process so that fewer mistakes are made.
The islands are numbered 1 through N. No two islands are initially connected by bridges. The initial number of penguins on each island is known. That number may change, but will always be between 0 and 1000 (inclusive).
Your program must handle the following three types of commands:
- "bridge A B" – an offer was received to build a bridge between islands A and B (A and B will be different). To limit costs, your program must accept the offer only if there isn't already a way to get from one island to the other using previously built bridges. If the offer is accepted, the program should output "yes", after which the bridge is built. If the offer is rejected, the program should output "no".
- "penguins A X" – the penguins on island A have been recounted and there are now X of them. This is an informative command and your program does not need to respond.
- "excursion A B" – a group of tourists wants an excursion from island A to island B. If the excursion is possible (it is possible to get from island A to B), the program should output the total number of penguins the tourists would see on the excursion (including islands A and B). Otherwise, your program should output "impossible".
Input
The first line contains the integer N (1 ≤ N ≤ 30 000), the number of islands.
The second line contains N integers between 0 and 1000, the initial number of penguins on each of the islands.
The third line contains an integer Q (1 ≤ Q ≤ 300 000), the number of commands.
Q commands follow, each on its own line.
Output
Output the responses to commands "bridge" and "excursion", each on its own line.
Sample Input
5
4 2 4 5 6
10
excursion 1 1
excursion 1 2
bridge 1 2
excursion 1 2
bridge 3 4
bridge 3 5
excursion 4 5
bridge 1 3
excursion 2 4
excursion 2 5
Sample Output
4
impossible
yes
6
yes
yes
15
yes
15
16
HINT
题意
让你维护一棵树
link操作,update操作,query链上的点权和
题解:
就lct的基本操作啦
这种就主要维护里面的update信息
@)1%KBO0HM418$J94$1R.jpg)
代码:
//qscqesze
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <bitset>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define maxn 1205000
#define mod 1000000007
#define eps 1e-9
#define e exp(1.0)
#define PI acos(-1)
#define lowbit(x) (x)&(-x)
const double EP = 1E- ;
int Num;
//const int inf=0x7fffffff;
const ll inf=;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
//*************************************************************************************
const int MAXN = ;
struct Node {
Node *ch[], *p; int size, value;
int w;
bool rev;
Node(int t = );
inline bool dir(void) {return p->ch[] == this;}
inline void SetC(Node *x, bool d) {
ch[d] = x; x->p = this;
}
inline void Rev(void) {
swap(ch[], ch[]); rev ^= ;
}
inline void Push(void) {
if (rev) {
ch[]->Rev();
ch[]->Rev();
rev = ;
}
}
inline void Update(void) {
value = w+ch[]->value + ch[]->value;
size = ch[]->size + ch[]->size + ;
}
}Tnull, *null = &Tnull, *fim[MAXN];
// 要记得额外更新null的信息
Node::Node(int _value){ch[] = ch[] = p = null; rev = ;w = value = _value;}
inline bool isRoot(Node *x) {return x->p == null || (x != x->p->ch[] && x != x->p->ch[]);}
inline void rotate(Node *x) {
Node *p = x->p; bool d = x->dir();
p->Push(); x->Push();
if (!isRoot(p)) p->p->SetC(x, p->dir()); else x->p = p->p;
p->SetC(x->ch[!d], d);
x->SetC(p, !d);
p->Update();
}
inline void splay(Node *x) {
x->Push();
while (!isRoot(x)) {
if (isRoot(x->p)) rotate(x);
else {
if (x->dir() == x->p->dir()) {rotate(x->p); rotate(x);}
else {rotate(x); rotate(x);}
}
}
x->Update();
}
inline Node* Access(Node *x) {
Node *t = x, *q = null;
for (; x != null; x = x->p) {
splay(x); x->ch[] = q; q = x;
}
splay(t); //info will be updated in the splay;
return q;
}
inline void Evert(Node *x) {
Access(x); x->Rev();
}
inline void link(Node *x, Node *y) {
Evert(x); x->p = y;
}
inline Node* getRoot(Node *x) {
Node *tmp = x;
Access(x);
while (tmp->Push(), tmp->ch[] != null) tmp = tmp->ch[];
splay(tmp);
return tmp;
}
// 一定要确定x和y之间有边
inline void cut(Node *x, Node *y) {
Access(x); splay(y);
if (y->p != x) swap(x, y);
Access(x); splay(y);
y->p = null;
}
inline Node* getPath(Node *x, Node *y) {
Evert(x); Access(y);
return y;
}
inline void clear(void) {
null->rev = ; null->size = ; null->value = ;
} int main()
{
int n=read();
for(int i=;i<=n;i++)
{
int x = read();
fim[i] = new Node(x);
}
int q = read();
char s[];
while(q--)
{
scanf("%s",s);
if(s[]=='e')
{
int x=read(),y=read();
if(getRoot(fim[x])!=getRoot(fim[y]))
{
printf("impossible\n");continue;
}
Evert(fim[x]);
Access(fim[y]);
splay(fim[y]);
printf("%d\n",fim[y]->value);
}
if(s[]=='b')
{
int x=read();
int y=read();
if(getRoot(fim[x])==getRoot(fim[y]))
puts("no");
else
{
puts("yes");
link(fim[x],fim[y]);
}
}
if(s[]=='p')
{
int x=read(),y=read();
Evert(fim[x]);fim[x]->w = y;
fim[x]->Update();
}
} }
SPOJ - OTOCI LCT的更多相关文章
- SPOJ OTOCI 动态树 LCT
SPOJ OTOCI 裸的动态树问题. 回顾一下我们对树的认识. 最初,它是一个连通的无向的无环的图,然后我们发现由一个根出发进行BFS 会出现层次分明的树状图形. 然后根据树的递归和层次性质,我们得 ...
- SPOJ QTREE4 lct
题目链接 这个题已经处于花式tle了,改版后的spoj更慢了.. tle的话就多交几把... #include <iostream> #include <fstream> #i ...
- BZOJ 1180: [CROATIAN2009]OTOCI [LCT]
1180: [CROATIAN2009]OTOCI Time Limit: 50 Sec Memory Limit: 162 MBSubmit: 961 Solved: 594[Submit][S ...
- BZOJ2843极地旅行社&BZOJ1180[CROATIAN2009]OTOCI——LCT
题目描述 给出n个结点以及每个点初始时对应的权值wi.起始时点与点之间没有连边.有3类操作: 1.bridge A B:询问结点A与结点B是否连通. 如果是则输出“no”.否则输出“yes”,并且在 ...
- BZOJ1180 [CROATIAN2009]OTOCI LCT
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1180 本题和BZOJ2843一样. BZOJ2843 极地旅行社 LCT 题意概括 有n座岛 每座 ...
- 【bzoj1180】[CROATIAN2009]OTOCI LCT
题目描述 给出n个结点以及每个点初始时对应的权值wi.起始时点与点之间没有连边.有3类操作: 1.bridge A B:询问结点A与结点B是否连通.如果是则输出“no”.否则输出“yes”,并且在结点 ...
- SPOJ QTREE3 lct
题目链接 题意: 给定n个点 q个询问 以下n-1行给出树边,点有黑或白色.初始化为白色 以下q行: 询问有2种: 1. 0 x 把x点黑变白,白变黑 2.1 x 询问Path(1,x)路径上第一个黑 ...
- SPOJ QTREE2 lct
题目链接 题意: 给一棵树.有边权 1.询问路径的边权和 2.询问沿着路径的第k个点标. 思路:lct裸题. #include <iostream> #include <fstrea ...
- SPOJ QTREE5 lct
题目链接 对于每一个节点,记录这个节点所在链的信息: ls:(链的上端点)距离链内部近期的白点距离 rs:(链的下端点)距离链内部近期的白点距离 注意以上都是实边 虚边的信息用一个set维护. set ...
随机推荐
- Ubuntu忘记管理员密码
Ubuntu中不小心把管理员密码忘记了,真叫人头大. 现提供一个解决方案: 1.重启 Ubuntu 系统,按 Esc 进入GRUB 菜单界面,如下图: 2.选择recovery mode. (第二个) ...
- 第二部分 overlay 架构初探
1 overlay可能支持的颜色格式/* possible overlay formats可能支持的颜色格式 */enum { OVERLAY_FORMAT_RGBA_8888 = HAL ...
- [转载]Java的内存回收机制
转自:http://www.admin10000.com/document/1671.html 在Java中,它的内存管理包括两方面:内存分配(创建Java对象的时候)和内存回收,这两方面工作都是由J ...
- bzoj1293
简易贪心+heap 注意要用链表 type link=^node; node=record loc:longint; next:link; end; ...
- 【原】cocos2d-x开发笔记:多点触控
在项目开发中,我们做的大地图,一个手指头按下滑动可以拖动大地图,两个手指头按下张开或者闭合,可以放大和缩小地图 在实现这个功能的时候,需要使用到cocos2d-x的多点触控功能. 多点触控事件,并不是 ...
- DOM的定义及DOM相关
DOM : Document Object Model 文档对象模型文档:html页面文档对象:页面中元素文档对象模型:定义 为了能够让程序(js)去操作页面中的元素 DOM会把文档看作是一棵树,同时 ...
- Struts2的struts.properties文件在哪儿啊?
老师教我们Struts2的时候叫我们建了个Struts.xml文件啊?那struts.properties呢?不需要吗? 回答1: struts.properties 是可以不要的!!!因为 stru ...
- Android中全屏或者取消标题栏
先介绍去掉标题栏的方法: 第一种:也一般入门的时候经常使用的一种方法 requestWindowFeature(Window.FEATURE_NO_TITLE);//去掉标题栏 注意这句一定要写在se ...
- puppet学习:文件夹权限的问题
之前Zabbix自动部署的文件夹结构总觉得别扭,今天下午抽空调整了下.调整完后,依然是例行的测试. 在客户端执行puppet agent -t时,报错如下: Failed to generate ad ...
- 3D魔方游戏
初学OpenGL时做的小程序,涉及到了OpenGL的大部分基本内容,如视图模型变换.色彩.纹理贴图.材质.光照.显示列表.选择等 三阶魔方有3×3×3个方块组成,每个方块的类当中都有一个4×4的矩阵, ...