Problem H. Hiking in the Hills

题目连接:

http://codeforces.com/gym/100531/attachments

Description

Helen is hiking with her friends in a highland. Their plan is to hike from their camp A to a beautiful

showplace B.

Unfortunately, Helen started feeling dizzy due to altitude sickness. Help her group find a route such that

the topmost height on that route is as small as possible.

Input

The input file contains full information about the landscape of a square region 106 × 106

in the following

format. The first line contains integer n — the number of triangles in the landscape (2 ≤ n ≤ 2000).

Each of following n lines contains nine integers xi1, yi1, zi1, xi2, yi2, zi2, xi3, yi3, zi3 — coordinates of a

triangle. All coordinates belong to the closed interval [0, 106

]. The two last lines contain three integers

each: xA, yA, zA and xB, yB, zB — coordinates of the camp A and the showplace B.

The given triangles are guaranteed to describe a consistent continuous landscape. Projections of triangles

onto XY plane are non-degenerate and fill the square without overlapping. A vertex of one triangle never

lays inside an edge of another triangle. Points A and B belong to the landscape surface and are different.

Output

Output a polyline route from A to B with the smallest possible topmost height. The first line should

contain m, the number of vertices in this polyline. Each of following m lines should contain three integer

coordinates of a polyline vertex: xi

, yi

, and zi

. Vertices must be listed along the polyline, from A to B

(including these two endpoints).

All coordinates of polyline vertices should be integer. Each polyline edge must belong to some triangle

from the input file (possibly, to its edge). The number of vertices in the polyline must not exceed 5n.

Sample Input

8

1000000 0 0 1000000 1000000 150000 600000 600000 400000

0 1000000 0 600000 600000 400000 600000 1000000 300000

0 1000000 0 400000 300000 150000 600000 600000 400000

400000 0 200000 1000000 0 0 400000 300000 150000

400000 300000 150000 1000000 0 0 600000 600000 400000

600000 600000 400000 1000000 1000000 150000 600000 1000000 300000

0 0 0 400000 0 200000 400000 300000 150000

0 1000000 0 0 0 0 400000 300000 150000

100000 700000 37500

900000 400000 137500

Sample Output

4

100000 700000 37500

400000 300000 150000

900000 150000 100000

900000 400000 137500

Hint

题意

给你一个多面体,每个平面都是一个三角形

然后给你一个A点和B点,你需要输出一个从A到B的路径,使得这条路径的最高点最低

题解:

首先,走点一定是可行的,所以我们就可以不用去考虑边。

在一个三角形内的话,就连一条边。

然后我们直接二分高度,然后每次CHECK A是否能到B 就好了

注意精度有毒。。。

代码

#include<bits/stdc++.h>
using namespace std; struct node
{
double x,y,z;
bool operator<(const node& p) const
{
if(z==p.z&&y==p.y)return x<p.x;
if(z==p.z)return y<p.y;
return z<p.z;
}
};
struct Tri
{
node p[3];
};
Tri tri[5006];
map<node,int> H;
map<int,node> T;
int tot = 1;
node A,B;
vector<int> E[7000];
int vis[7000];
int n;
void init()
{
memset(vis,0,sizeof(vis));
H.clear();
T.clear();
tot = 1;
for(int i=0;i<7000;i++)
E[i].clear();
memset(tri,0,sizeof(tri));
}
double eps = 1e-2;
double dis(node aa,node bb)
{
return sqrt((aa.x-bb.x)*(aa.x-bb.x)+(aa.y-bb.y)*(aa.y-bb.y)+(aa.z-bb.z)*(aa.z-bb.z));
}
double area(node aa,node bb,node cc)
{
double l1 = dis(aa,bb);
double l2 = dis(aa,cc);
double l3 = dis(bb,cc);
double pp = (l1+l2+l3)/2.0;
return sqrt(pp*(pp-l1)*(pp-l2)*(pp-l3));
}
int inRan(Tri kkk,node ttt)
{
double a1 = area(kkk.p[0],kkk.p[1],ttt);
double a2 = area(kkk.p[0],kkk.p[2],ttt);
double a3 = area(kkk.p[1],kkk.p[2],ttt);
double a4 = area(kkk.p[0],kkk.p[1],kkk.p[2]);
if(fabs(a4-a1-a2-a3)<=eps)return 1;
return 0;
}
void dfs(int x,int h)
{
vis[x]=1;
for(int i=0;i<E[x].size();i++)
{
int v = E[x][i];
if(vis[v])continue;
if(T[v].z>h)continue;
dfs(v,h);
}
}
int check(double h)
{
if(A.z>h||B.z>h)return 0;
memset(vis,0,sizeof(vis));
dfs(H[A],h);
if(vis[H[B]]==1)return 1;
return 0;
}
vector<node> TTT;
int flag = 0;
void dfs2(int x,double h)
{
if(flag)return;
TTT.push_back(T[x]);
if(x==H[B])
{
flag = 1;
cout<<TTT.size()<<endl;
for(int i=0;i<TTT.size();i++)
printf("%.0f %.0f %.0f\n",TTT[i].x,TTT[i].y,TTT[i].z);
return;
}
vis[x]=1;
for(int i=0;i<E[x].size();i++)
{
int v = E[x][i];
if(vis[v])continue;
if(T[v].z>h)continue;
dfs2(v,h);
TTT.pop_back();
}
}
int main()
{
freopen("hiking.in","r",stdin);
freopen("hiking.out","w",stdout);
init();
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
for(int j=0;j<3;j++)
{
scanf("%lf%lf%lf",&tri[i].p[j].x,&tri[i].p[j].y,&tri[i].p[j].z);
if(H[tri[i].p[j]]==0)
{
T[tot] = tri[i].p[j];
H[tri[i].p[j]] = tot++;
}
}
for(int j=0;j<3;j++)
{
for(int k=j+1;k<3;k++)
{
E[H[tri[i].p[j]]].push_back(H[tri[i].p[k]]);
E[H[tri[i].p[k]]].push_back(H[tri[i].p[j]]);
}
}
}
scanf("%lf%lf%lf",&A.x,&A.y,&A.z);
scanf("%lf%lf%lf",&B.x,&B.y,&B.z);
if(H[A]==0)
{
T[tot] = A;
H[A] = tot++;
for(int i=1;i<=n;i++)
{
if(inRan(tri[i],A))
{
for(int j=0;j<3;j++)
{
E[H[A]].push_back(H[tri[i].p[j]]);
E[H[tri[i].p[j]]].push_back(H[A]);
}
}
}
}
if(H[B]==0)
{
T[tot] = B;
H[B] = tot++;
for(int i=1;i<=n;i++)
{
if(inRan(tri[i],B))
{
for(int j=0;j<3;j++)
{
E[H[B]].push_back(H[tri[i].p[j]]);
E[H[tri[i].p[j]]].push_back(H[B]);
}
}
}
}
double l = -2.0,r = 3000050.0;
for(int i=1;i<=100;i++)
{
double mid = (l+r)/2.0;
if(check(mid))r=mid;
else l=mid;
}
memset(vis,0,sizeof(vis));
TTT.clear();
dfs2(H[A],r+1);
}

Gym 100531H Problem H. Hiking in the Hills 二分的更多相关文章

  1. Codeforces Gym 100610 Problem H. Horrible Truth 瞎搞

    Problem H. Horrible Truth Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/1006 ...

  2. Codeforces Gym 100342H Problem H. Hard Test 构造题,卡迪杰斯特拉

    Problem H. Hard TestTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100342/at ...

  3. codeforce gym/100495/problem/K—Wolf and sheep 两圆求相交面积 与 gym/100495/problem/E—Simple sequence思路简述

    之前几乎没写过什么这种几何的计算题.在众多大佬的博客下终于记起来了当时的公式.嘚赶快补计算几何和概率论的坑了... 这题的要求,在对两圆相交的板子略做修改后,很容易实现.这里直接给出代码.重点的部分有 ...

  4. 2013-2014 ACM-ICPC, NEERC, Southern Subregional Contest Problem H. Password Service dp

    Problem H. Password Service 题目连接: http://www.codeforces.com/gym/100253 Description Startups are here ...

  5. 2010-2011 ACM-ICPC, NEERC, Moscow Subregional Contest Problem H. Hometask 水题

    Problem H. Hometask 题目连接: http://codeforces.com/gym/100714 Description Kolya is still trying to pass ...

  6. 实验12:Problem H: 整型数组运算符重载

    Home Web Board ProblemSet Standing Status Statistics   Problem H: 整型数组运算符重载 Problem H: 整型数组运算符重载 Tim ...

  7. The Ninth Hunan Collegiate Programming Contest (2013) Problem H

    Problem H High bridge, low bridge Q: There are one high bridge and one low bridge across the river. ...

  8. 清北学堂入学测试P4751 H’s problem(h)

    P4751 H’s problem(h)  时间: 1000ms / 空间: 655360KiB / Java类名: Main 背景 冬令营入学测试 描述 小H是一个喜欢逛街的女孩子,但是由于上了大学 ...

  9. Problem H

    Problem Description 穿过幽谷意味着离大魔王lemon已经无限接近了! 可谁能想到,yifenfei在斩杀了一些虾兵蟹将后,却再次面临命运大迷宫的考验,这是魔王lemon设下的又一个 ...

随机推荐

  1. linux清空日志文件内容 (转)

    随着系统运行时间越来越长,日志文件的大小也会随之变得越来越大.如果长期让这些历史日志保存在系统中,将会占用大量的磁盘空间.用户可以直接把这些日志文件删除,但删除日志文件可能会造成一些意想不到的后果.为 ...

  2. Effective java笔记6--异常

    充分发挥异常的优点,可以提高一个程序的可读性.可靠性和可维护性.如果使用不当的话,它们也会带来负面影响. 一.只针对不正常的条件才使用异常 先看一段代码: //Horrible abuse of ex ...

  3. VB6.0编程笔记——(1)篇外篇&目录

    从计算机专业毕业到进入IT行业,说来也有些年头了.相比较而言算是幸运,也有很多的同学进入了其他行业,也有一些朋友又想进入这个行业.现在回想自己的一路历程,总结一下,也是一份记忆. 基于以上的原因,希望 ...

  4. GitHub使用教程及常见错误解决

    1.下载Git并安装 Git for Windows Git-1.8.4-preview20130916.exe 按照默认步骤完成安装 2.设置SSH建立计算机与Github的链接 2.1 点击 开始 ...

  5. JDBC项目实践

    这几天学习了JDBC的接口,从简单的连接,到不断地对JDBC的代码进行优化,最后到实体类,DAO类的设计,现在对这几天所学做一个总结: 首先是软件的系统组成: 数据库中有很多的表:Customer,D ...

  6. 使用U盘安装win7系统,遇到“无法定位现有系统分区”问题

    朋友的本子貌似因为安装360wifi而导致一进入系统就蓝屏重启,虽然之后就卸载了360wifi,但是问题依旧,上网Google了一下,发觉网上不少网友诉苦,也有人分析原因,说是因为360wifi导致了 ...

  7. JAVA逻辑字符串判断真假

    package com.chinahrt.zyn.iteye; import javax.script.Bindings; import javax.script.Compilable; import ...

  8. C#获取ftp文件最后修改时间

    public static DateTime GetFileModifyDateTime(string ftpServerIP,string ftpFolder,string ftpUserID,st ...

  9. 云计算分布式大数据Hadoop实战高手之路第七讲Hadoop图文训练课程:通过HDFS的心跳来测试replication具体的工作机制和流程

    这一讲主要深入使用HDFS命令行工具操作Hadoop分布式集群,主要是通过实验的配置hdfs-site.xml文件的心跳来测试replication具体的工作和流程. 通过HDFS的心跳来测试repl ...

  10. hadoop-1.2.0 eclipse插件编译

    linux.windows下通用,亲测. 下面以window为例,假设:hadoop工程目录位于D:\work\eclipse64\hadoop-1.2.0.1.3.0.0,eclipse安装目录为E ...