1047: [HAOI2007]理想的正方形

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 1402  Solved: 738
[Submit][Status]

Description

有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小。

Input

第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非负整数,表示矩阵中相应位置上的数。每行相邻两数之间用一空格分隔。

Output

仅一个整数,为a*b矩阵中所有“n*n正方形区域中的最大整数和最小整数的差值”的最小值。

Sample Input

5 4 2
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2

Sample Output

1
问题规模
(1)矩阵中的所有数都不超过1,000,000,000
(2)20%的数据2<=a,b<=100,n<=a,n<=b,n<=10
(3)100%的数据2<=a,b<=1000,n<=a,n<=b,n<=100

HINT

题解:

真是一道好题!

我一开始只想到了二维的RMQ,分析了一下时间和空间复杂度,感觉都承受不起……

一看题解,恍然大悟,因为该问题的特殊性,固定了以n为边长,所以只要用单调队列即可,RMQ多余了,用不到RMQ的优点

(而且,我参看的大牛的代码很巧妙的使代码量降了下来,如下这是一种技巧,以后要掌握)

代码:

 uses math;
var f:array[..,..,..] of longint;
g,c:array[..,..] of longint;
i,j,a,b,n,ans:longint;
procedure init;
begin
readln(a,b,n);
for i:= to a do
begin
for j:= to b do read(c[i,j]);
readln;
end;
end;
procedure work(x:longint);
var i,j,l,r:longint;
q:array[..] of longint;
begin
for i:= to a do
begin
fillchar(q,sizeof(q),);
l:=;r:=;
for j:= to b do
begin
while (l<=r) and (c[i,q[r]]<=c[i,j]) do dec(r);
inc(r);q[r]:=j;
while (l<r) and (q[l]<j-n+) do inc(l);
g[i,j]:=c[i,q[l]];
end;
end;
for i:= to b do
begin
fillchar(q,sizeof(q),);
l:=;r:=;
for j:= to a do
begin
while (l<=r) and (g[q[r],i]<=g[j,i]) do dec(r);
inc(r);q[r]:=j;
while (l<r) and (q[l]<j-n+) do inc(l);
f[x,j,i]:=g[q[l],i];
end;
end;
end;
procedure main;
begin
work();
for i:= to a do
for j:= to b do
c[i,j]:=-c[i,j];
work();
ans:=maxlongint;
for i:=n to a do
for j:=n to b do
ans:=min(ans,f[,i,j]+f[,i,j]);
writeln(ans);
end;
begin
init;
main;
end.

HAOI2007 理想的正方形的更多相关文章

  1. BZOJ1047: [HAOI2007]理想的正方形 [单调队列]

    1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2857  Solved: 1560[Submit][St ...

  2. RAM——[HAOI2007]理想的正方形

    题目:[HAOI2007]理想的正方形 描述: [问题描述] 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. [输入]: 第一行为3个 ...

  3. bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp

    题目链接 1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2369  Solved: 1266[Submi ...

  4. BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )

    单调队列..先对每一行扫一次维护以每个点(x, y)为结尾的长度为n的最大最小值.然后再对每一列扫一次, 在之前的基础上维护(x, y)为结尾的长度为n的最大最小值. 时间复杂度O(ab) (话说还是 ...

  5. 【BZOJ1047】[HAOI2007]理想的正方形(单调队列,动态规划)

    [BZOJ1047][HAOI2007]理想的正方形(单调队列,动态规划) 题面 BZOJ 洛谷 题解 直接一个单调队列维护一下没给点和它前面的\(n\)个位置的最大值,再用一次单调队列维护连续\(n ...

  6. bzoj千题计划215:bzoj1047: [HAOI2007]理想的正方形

    http://www.lydsy.com/JudgeOnline/problem.php?id=1047 先用单调队列求出每横着n个最大值 再在里面用单调队列求出每竖着n个的最大值 这样一个位置就代表 ...

  7. 【BZOJ1047】[HAOI2007]理想的正方形

    [BZOJ1047][HAOI2007]理想的正方形 题面 bzoj 洛谷 题解 二维\(st\)表,代码是以前的 #include<iostream> #include<cstdi ...

  8. 【BZOJ1047】[HAOI2007]理想的正方形 (倍增ST表)

    [HAOI2007]理想的正方形 题目描述 有一个\(a*b\)的整数组成的矩阵,现请你从中找出一个\(n*n\)的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: ...

  9. AC日记——[HAOI2007]理想的正方形 P2216

    [HAOI2007] 理想的正方形 思路: 正解多个单调队列: 但是我用树套树水了过去: 来,上代码: #include <cstdio> #include <cstring> ...

随机推荐

  1. cxgrid GridMode 等于 True 时的一些问题。

    When using grid mode, the data controller loads a fixed number of dataset records into memory. The n ...

  2. JavaScript技巧45招

    原文:45 Useful JavaScript Tips, Tricks and Best Practices作者:Saad Mousliki 在这篇文章里,我将分享一些JavaScript的技巧.秘 ...

  3. Matlab生成.dll文件在.NET中加载失败与平台的关系及解决方案

    问题链接地址:http://bbs.elecfans.com/forum.php?mod=viewthread&tid=207995

  4. linux标准输入输出重定向

    command > filename 把标准输出重定向到一个文件,如果文件不存在则新建,如果存在则覆盖其内容.command >> filename 把标准输出重定向到一个文件中,如 ...

  5. Mac OS X 软件推荐

    ​1. 前言 每个操作系统都有自己的一套软件系统,但是不同的用户却会有不同的需求,系统虽会为用户提供一些基础软件,不过为了能无碍的进入自己的学习和工作状态,总有一些软件是必须安装的,同时这些软件也可以 ...

  6. [Jquery] js验证手机号

    function checkIdPhone(id,idErr){ var reg0=/^(13[0-9]|15[012356789]|18[01235,idErr6789]|14[57]|17[0]) ...

  7. Flask, Tornado, GEvent, 以及它们的结合的性能比较

    Flask, Tornado, GEvent, 以及它们的结合的性能比较 英文: http://blog.wensheng.com/2011/10/performance-of-flask-torna ...

  8. 【leetcode】Dungeon Game (middle)

    The demons had captured the princess (P) and imprisoned her in the bottom-right corner of a dungeon. ...

  9. HDU 1883 Phone Cell (圆覆盖最多点)

    题目链接 题意 : 给你很多点和一个半径r,这个半径为r的圆能覆盖的最多的点是多少. 思路 : 对每个点做半径为 r 的圆, 求交集,交集最多的区域的被覆盖次数就是能覆盖的最多的点.贴两个链接,分析的 ...

  10. 缺少编译器要求的成员“System.Runtime.CompilerServices.ExtensionAttribute..ctor” 解决方案

    静态类中添加如下.此方法本人测试有效. //缺少编译器要求的成员“ystem.Runtime.CompilerServices.ExtensionAttribute..ctor” namespace  ...