题意:

Morley定理:任意三角形中,每个角的三等分线,相交出来的三个点构成一个正三角形。

不过这和题目关系不大,题目所求是正三角形的三个点的坐标,保留6位小数。

分析:

由于对称性,求出D点,EF也是同样的。

用点和向量的形式表示一条直线,向量BA、BC的夹角为a1,则将BC逆时针旋转a1/3可求得 直线BD,同理也可求得直线CD,最后再求交点即可。

 //#define LOCAL
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std; struct Point
{
double x, y;
Point(double x=, double y=) :x(x),y(y) {}
};
typedef Point Vector;
const double EPS = 1e-; Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); } Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); } Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); } Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } bool operator < (const Point& a, const Point& b)
{ return a.x < b.x || (a.x == b.x && a.y < b.y); } int dcmp(double x)
{ if(fabs(x) < EPS) return ; else x < ? - : ; } bool operator == (const Point& a, const Point& b)
{ return dcmp(a.x-b.x) == && dcmp(a.y-b.y) == ; } double Dot(Vector A, Vector B)
{ return A.x*B.x + A.y*B.y; } double Length(Vector A) { return sqrt(Dot(A, A)); } double Angle(Vector A, Vector B)
{ return acos(Dot(A, B) / Length(A) / Length(B)); } double Cross(Vector A, Vector B)
{ return A.x*B.y - A.y*B.x; } double Area2(Point A, Point B, Point C)
{ return Cross(B-A, C-A); } Vector VRotate(Vector A, double rad)
{
return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad));
} Point GetLineIntersection(Point P, Vector v, Point Q, Vector w)
{
Vector u = P - Q;
double t = Cross(w, u) / Cross(v, w);
return P + v*t;
} Point read_point(void)
{
double x, y;
scanf("%lf%lf", &x, &y);
return Point(x, y);
} Point GetD(Point A, Point B, Point C)
{
Vector v1 = C - B;
double a1 = Angle(A-B, v1);
v1 = VRotate(v1, a1/); Vector v2 = B - C;
double a2 = Angle(A-C, v2);
v2 = VRotate(v2, -a2/); return GetLineIntersection(B, v1, C, v2);
} int main(void)
{
#ifdef LOCAL
freopen("11178in.txt", "r", stdin);
#endif int T;
scanf("%d", &T);
while(T--)
{
Point A, B, C, D, E, F;
A = read_point();
B = read_point();
C = read_point();
D = GetD(A, B, C);
E = GetD(B, C, A);
F = GetD(C, A, B);
printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n", D.x, D.y, E.x, E.y, F.x, F.y);
} return ;
}

代码君

UVa 11178 (简单练习) Morley's Theorem的更多相关文章

  1. uva 11178 - Morley's Theorem

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  2. UVA 11178 Morley's Theorem (坐标旋转)

    题目链接:UVA 11178 Description Input Output Sample Input Sample Output Solution 题意 \(Morley's\ theorem\) ...

  3. UVA 11178 Morley's Theorem(几何)

    Morley's Theorem [题目链接]Morley's Theorem [题目类型]几何 &题解: 蓝书P259 简单的几何模拟,但要熟练的应用模板,还有注意模板的适用范围和传参不要传 ...

  4. uva 11178 Morley&#39;s Theorem(计算几何-点和直线)

    Problem D Morley's Theorem Input: Standard Input Output: Standard Output Morley's theorem states tha ...

  5. UVa 11178:Morley’s Theorem(两射线交点)

    Problem DMorley’s TheoremInput: Standard Input Output: Standard Output Morley’s theorem states that ...

  6. uva11178 Morley’s Theorem(求三角形的角三分线围成三角形的点)

    Morley’s Theorem Input: Standard Input Output: Standard Output Morley’s theorem states that that the ...

  7. uva 11178二维几何(点与直线、点积叉积)

    Problem D Morley’s Theorem Input: Standard Input Output: Standard Output Morley’s theorem states tha ...

  8. 简单几何(求交点) UVA 11178 Morley's Theorem

    题目传送门 题意:莫雷定理,求三个点的坐标 分析:训练指南P259,用到了求角度,向量旋转,求射线交点 /*********************************************** ...

  9. UVA 11178 - Morley's Theorem 向量

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

随机推荐

  1. 对frameset、frame、iframe的js操作

    框架编程概述一个HTML页面可以有一个或多个子框架,这些子框架以<iframe>来标记,用来显示一个独立的HTML页面.这里所讲的框架编程包括框架的自我控制以及框架之间的互相访问,例如从一 ...

  2. 学习Linux第一天

    1.简介: 记住这个名字:Linus Torvals 系统组成:Linux内核,Shell, 文件系统,实时程序 Tips:在系统启动过程中,使用Alt+F2组合键,可以查看Ubuntu启动的详细过程 ...

  3. segment fault

    http://blog.chinaunix.net/uid-23069658-id-3959636.html

  4. angular事件代理

    在angular中,是不支持事件代理的,有些时候,我们需要处理比较多的数据,尤其是一些列表的时候,可能会很多,如果给每一项都加事件的话,注定慢很多,为了解决这个事情,因此需要一个做事件代理的direc ...

  5. Codeforces Round #355 (Div. 2) D. Vanya and Treasure dp+分块

    题目链接: http://codeforces.com/contest/677/problem/D 题意: 让你求最短的从start->...->1->...->2->. ...

  6. 【DP/二分】BZOJ 1863:[Zjoi2006]trouble 皇帝的烦恼

    863: [Zjoi2006]trouble 皇帝的烦恼 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 465  Solved: 240[Submit][ ...

  7. 【UVA】【10828】随机程序

    数学期望/高斯消元/马尔可夫过程 刘汝佳老师白书上的例题- -b 本体不满足拓扑关系,但马尔可夫过程是可以高斯消元解的…… 用「高斯·约当消元」更方便! //UVA 10828 #include< ...

  8. Caffe训练好的网络对图像分类

    对于训练好的Caffe 网络 输入:彩色or灰度图片 做minist 下手写识别分类,不能直接使用,需去除均值图像,同时将输入图像像素归一化到0-1直接即可. #include <caffe/c ...

  9. C#中Hashtable容器的了解与使用

    初涉Hashtable寄语 由于近段时间培训内容涉及到Hashtable方面的知识,由于培训仅仅起到一个引导的作用,加之以前又接触得少,因此对Hashtable这个东东蛮陌生,呵呵,今晚木有事儿就一起 ...

  10. HDU 3038 How Many Answers Are Wrong(带权并查集)

    太坑人了啊,读入数据a,b,s的时候,我刚开始s用的%lld,给我WA. 实在找不到错误啊,后来不知怎么地突然有个想法,改成%I64d,竟然AC了 思路:我建立一个sum数组,设i的父亲为fa,sum ...