设 $f$ 在区间 $I$ 上三阶可导, $f'\neq 0$, 则可定义 $f$ 的 Schwarz 导数: $$\bex S(f,x)=\frac{f'''(x)}{f'(x)}-\frac{3}{2}\sez{\frac{f''(x)}{f'(x)}}^2 =\sez{\frac{f''(x)}{f'(x)}}'-\frac{1}{2}\sez{\frac{f''(x)}{f'(x)}}^2. \eex$$ 证明: 若 $p(x)$ 是 $x$ 的多项式, 且 $p'(x)$ 的根都是互不相同的实数, 则 $S(p,x)<0$.

[Everyday Mathematics]20150209的更多相关文章

  1. [Everyday Mathematics]20150304

    证明: $$\bex \frac{2}{\pi}\int_0^\infty \frac{1-\cos 1\cos \lm-\lm \sin 1\sin \lm}{1-\lm^2}\cos \lm x\ ...

  2. [Everyday Mathematics]20150303

    设 $f$ 是 $\bbR$ 上的 $T$ - 周期函数, 试证: $$\bex \int_T^\infty\frac{f(x)}{x}\rd x\mbox{ 收敛 } \ra \int_0^T f( ...

  3. [Everyday Mathematics]20150302

    $$\bex |p|<\frac{1}{2}\ra \int_0^\infty \sex{\frac{x^p-x^{-p}}{1-x}}^2\rd x =2(1-2p\pi \cot 2p\pi ...

  4. [Everyday Mathematics]20150301

    设 $f(x)$ 在 $[-1,1]$ 上有任意阶导数, $f^{(n)}(0)=0$, 其中 $n$ 是任意正整数, 且存在 $C>0$, $$\bex |f^{(n)}(x)|\leq C^ ...

  5. [Everyday Mathematics]20150228

    试证: $$\bex \int_0^\infty \sin\sex{x^3+\frac{\pi}{4}}\rd x =\frac{\sqrt{6}+\sqrt{2}}{4}\int_0^\infty ...

  6. [Everyday Mathematics]20150227

    (Marden's Theorem) 设 $p(z)$ 是三次复系数多项式, 其三个根 $z_1,z_2,z_3$ 不共线; 再设 $T$ 是以 $z_1,z_2,z_3$ 为顶点的三角形. 则存在唯 ...

  7. [Everyday Mathematics]20150226

    设 $z\in\bbC$ 适合 $|z+1|>2$. 试证: $$\bex |z^3+1|>1. \eex$$

  8. [Everyday Mathematics]20150225

    设 $f:\bbR\to\bbR$ 二次可微, 适合 $f(0)=0$. 试证: $$\bex \exists\ \xi\in\sex{-\frac{\pi}{2},\frac{\pi}{2}},\s ...

  9. [Everyday Mathematics]20150224

    设 $A,B$ 是 $n$ 阶实对称矩阵, 它们的特征值 $>1$. 试证: $AB$ 的特征值的绝对值 $>1$.

随机推荐

  1. C#中dynamic的正确用法 以及 typeof(DynamicSample).GetMethod("Add");

    dynamic是FrameWork4.0的新特性.dynamic的出现让C#具有了弱语言类型的特性.编译器在编译的时候不再对类型进行检查,编译期默认dynamic对象支持你想要的任何特性.比如,即使你 ...

  2. lintcode : 平衡二叉树

    题目 平衡二叉树 给定一个二叉树,确定它是高度平衡的.对于这个问题,一棵高度平衡的二叉树的定义是:一棵二叉树中每个节点的两个子树的深度相差不会超过1. 样例 给出二叉树 A={3,9,20,#,#,1 ...

  3. lintcode :链表插入排序

    题目: 链表插入排序 用插入排序对链表排序 样例 Given 1->3->2->0->null, return 0->1->2->3->null 解题: ...

  4. 应用程序出现挂死,.NET Runtime at IP 791F7E06 (79140000) with exit code 80131506.

    工具出现挂死问题 1.问题描述 工具出现挂死问题,巡检IIS发现以下异常日志 现网系统日志: 事件类型:    错误 事件来源:    .NET Runtime 描述: Application: Di ...

  5. GuessNumber

    import java.util.*; public class GuessNumber { public static void main(String[] args) { int num = ne ...

  6. shell脚本 -d 是目录文件,那么-e,-f等说明

    -e filename 如果 filename存在,则为真 -d filename 如果 filename为目录,则为真 -f filename 如果 filename为常规文件,则为真 -L fil ...

  7. 2、@RequestMapping注解的用法

    @RequestMapping有如下属性值:

  8. opengl 杂记

    函数原型: void glClear(GLbitfield mask); 参数说明: GLbitfield:可以使用 | 运算符组合不同的缓冲标志位,表明需要清除的缓冲,例如glClear(GL_CO ...

  9. C# MySql分页存储过程的应用

    存储过程: 获取范围内的数据 DELIMITER $$ DROP PROCEDURE IF EXISTS `studb`.`GetRecordAsPage` $$ ),), ),)) BEGIN de ...

  10. JAVA文件中获取路径及WEB应用程序获取路径方法

    JAVA文件中获取路径及WEB应用程序获取路径方法 1. 基本概念的理解 `绝对路径`:你应用上的文件或目录在硬盘上真正的路径,如:URL.物理路径 例如: c:/xyz/test.txt代表了tes ...