• 坐标轴
  • 平移
  • 旋转
  • 缩放
  • 重置坐标轴
  • 矩阵操作
  • 示例
1、坐标轴
 OpenGL 使用的右手坐标系,从正面看原点,逆时针旋转被认为是正旋转。

x轴:从左到右
y轴:从底部向上
z轴:从屏幕背向朝向前方
 
2、平移
public abstract void glTranslatef(float x ,float y, float z)
平移操作相当于对坐标值进行加减法
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAMAAAADBCAYAAACZgL+iAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAACERJREFUeNrsnb9uG0cQh1exHSlwAgoQYBhIALIwgnR0FaTjuTHSUW9AIi8gpUtjiIZfgCmTRtQTWHoC0VVKUp0LA6TaIIboICmSFMwObs460aJIikPz7vb7gAF5krgi5/a3M7vcP84BAKyRGi6AUCl7G+tjQsnby4m/O/RWxV32fIIL1kpr4lF4523o7UCv6962vZ3hLigS0tJfaAS40Ov07wb6vDcRIYAIUAj2tWV3+rg/EQU63k69HXs7x11QNAba+ic2uCZCjCciA0AhaExU/sQaE383xlVQRHpTBNBDAFB0qlMqf2Lp4c4D3AVF5kArPRV9TTAKBAgAAAEAIADIAWX6DAggZNru6twhQADBsOetixsgzyRDn9Ps9IbUJ5kmzRdkUCgxzJPTn2oEqOlrWEhDChQUkvrIrNFIryNcAiFFgDSkQESAoGnhAgQQMs9xAQIAQAAACAAAAQAgAICFuIsLiseznQeyk4Rss7Lr4i/Pjl+8/f1HPIMAQqj8sqa46y73HHIqBARAChQEspHW9ld37iTXIxUAIIBgBDB8uvmZPG95q/j0h31FIZOsZFeIt+VHVW9jecTFRIAQiSYeAQHkHhnZaWi0KCMABBBiqy4d2r6LR3lu2jR3d+IREEDuOUmZCKEyJf+v3XQNCCArHV+xlv6s5WavCXaaAsm6YBnpOZuR/jjSIASQRWQu/4ZaWgDJz57c8Nq+Vv7mDf0ABIAACou0+kcuPj2med0f7Jy/eZIWll7DFJgKkR8k/Rm6eIrDLh1cIkBo9DWdqWjl59wwIkBw6Q9TGogAAAgAAAEAIAAABACAAAAQAAACAEAAAAgAAAEAIIBiMO+aYEAAhaz8QrImmC1PDGA2aH44Sj1/7OIp0cwOJQLkjmXWBCdELl4aCQggdyyzJjhJhYa0/qRAofYD9h0L3RFAoJW/7eLF8NIHGBEFEEBotLXyO9IgBBAaR7iATjAAAgBAAAAIAAABACAAAAQAgAAAEAAAAgCYRaGmQjzbeSBLBSveRkU/Hf1t+ZGsG+iK7Zy/eUVVDlgAvuLL8kCZKBYlP/vty3L767v3Rll+3yd//xW9/u9f9829T6P6/c8XfXmUfF4vBnk4TgRBtZ6fjYJUfrnp28nPNr39cP8Lt7mxEep9HakgOkSH4keA3XTl9wxrm1udPFR+jQCRjwBdHwHmarl//XPU/HZzq/t4c6s58avjVErENOmABJBeGzv0uf/Ri2y/X1kT3PognfnjffomlfjJjNSn49OeCn0AyDvJAvmDBV4jnV9OfzeCYVBAAAAIAPJCx8XrgSFjApC8tGFQjnyZtadWMiivZFyeUF0wb7dE1gafz/Cd1d6hlnuRltxq9jYtz7gX8n9fpu79lWsrAZS0ZWoalCXDmn19brH72b62mCOjlrOu77GVscZM7kGybUrFqPI7Z7cXaaT3ICnPqjFqz7gX7/T/tfW6pdfvLJ3/UlueU+MbemFcSSxHUMYGZdxmFOhjfsb0+7R8jz1ns7lvEtnnuRcD9UvPOgWqq6r7xg4/NoooaUFJy8iY+e1ab4to3NDGUspa9su6sr6vn+f8+6a2/M1lBdDQViZpadpa+WXDpu1bKDtdXvLarlpryfdXXSBULlpeKFjuRdpPNWzL9gM6WkdqqT7oLBH3NX0174CIHWqYaRiWbxXOD9UsCSEFamjKUDL2nUVKdZCyWT4spz7HwK3ogJGaUR9gz12OKPWMKn9Py6wZfviiC6ChfbC6llc1KK+m5fWMK+F4jjrQSL2P943hHWMRWGzY+tDbd1rWT97+WbI8Sc1ea/5f0XLPjT7vsv2JSK1r3DfpG4xyJH57qH7bMri332s5LcN7MOtelPQz/KLXZ/rZ+gZ1CzIYAWAB+CYYEAAAAlgujFunBSGV5/DfSstb+dD1mPIy1Qfgfnz4exl1apACQajIqE/Hxd8BSGNTQgAQIhUXD8EOXfxdQFnWBMuXExF550crL7rG3y13OU1jqK0V/ltdeTJlp6l25eBmDAvBLpIIsGEQAdKtlwUhlZdEg66z29CK+/Hh791EdJWJkWbrARh1YBQot6NAFvsCdY0/UGjlOfy30vJkBIiNwjIKc4HWDMOggAAAEAAAAgBAAAAIAAABACAAAAQAgAAAEAAAAoA1s87zCRAArJWsnk+AAOCjcOLtOW6AvDJrCeq8GwyPcSUURQw35fPTzidAAAbcxQWZ50gN6AMAIACIaeECBBAyjAQhAAAEAIAAABAAAAIAQAAACAAAAQAgAAAEAIAAANIwHTp/yBGfTX3ecYZH/RABIA/su/isq5E+AhEgKNKzQCUSyCGHr3AL5AWrNcGSCg1wJxRBDLdZE3zoppx8CKRAReK6NcGHqd8BneCgkMovR392NP8v4xIiQEgM1SK97no7xy0IIBRYC0wKBIAAABAAAAIAQAAACAAAAQAgAAAEAIAAABAAwHUwFyh/yOzPXX3ecawJJgIEhlT+vj4/xh2QZ+ZZETYNWRJ5gQshr5V+mTXBB/p3ddwJRY8A160JrulrergQQk2BnIqihhtvD6NA+WNPO8EVb9uOPYGWglGg/DF0l+uBI9xBBAiNEzUgAgAgAAAEAIAAABAAAAIAQAAACAAAAQAgAAAEAIAAioFMg+aMMAQQJLIcsuMuD8wGBBAUUvnbuAHyyLJrgutaRs3Nf6YwQKbFMO+aYKn0AxWBrAyTNcFV3Hh7WBCTfdLnBJc1/ZFjUisuXhIpz89wEwIIATkONTklsqYi4LBsOsFBMtRoAAgg2GhA648AABAAAAIAQAAACAAAAQAgAAAEAIAAABAAwBX+F2AAl6XLcbmVRHEAAAAASUVORK5CYII=" alt="" width="139" />
二维中起点{-2,1} 要到{1,3} 我们需要添加{3,2}
三维中 {1,1,0} 要移动到{1,1,-3},我们需要添加{0,0,-3} 移动到屏幕中
gl.glTranslatef(0,0,-3);

3、旋转

public abstract void glRotatef(float angle,float x,float y,float z)
对坐标轴进行的操作
x,y,z 定义旋转的矢量,角度值是旋转的度数,
 
执行平移和旋转的顺序很重要
先平移-旋转,首先在网格上进行平移然后旋转它,则在网格坐标系当前状态上进行平移,新位置进行旋转
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA8oAAAEgCAYAAABsL4r5AAAACXBIWXMAAAsTAAALEwEAmpwYAAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAJnZJREFUeNrs3Q9wnOddJ/BnZcn/E0tW3PyxGzttKClQ7AKXuTbNWD1Kr00HbHNcJkDA7sHdUHJcnZvSMlDGzrQHbYcjzhydy0zhYt+UliuFOHNT0uOgsQs9Bl97cUqBliaNnMZtYse2HDv+pz97z6N91axd2VpJ7/vuu9LnM/OLVrKin/bZ1e/d777vvhsCzNymWBstA4C5ClAx91sCZqPLEjALm2MNWAaAXOfqZssAkMs83WQZgHZ4OtbjlgHAXAWokLWx6sFeZaCNAyjVCssBYK4CVMTWbJZ64pEZc+g1MzVwmcsAmKsAVZinG4InHoGSPRxe3vPxkOUAMFcBKuJE0zzdajmAdg2gpy0HgLkKUAHrm2apJx6Btg6gVGstC4C5CtBm775klnrikRnpbvH7+i0VTe64zNc+ZWlocjLWiGUwVzFXMVcLfizrNag0+7FLPl8X6wdjHbY0NDk21Te0cjKv9GCur6RfuE+vjuj1jkm+9uPWUK9LegmC5qpe5qpe5mrR1sRaXFKvG/TqiF7tmKdur87rtWSqb2p1j/KJVlJ3mQlfr7b2um2Sr72hpOvn9uqsXpirepmrelGktIf9eKyzJfRaolfle228zNd/pOC/U7dX5/WakreHYro2XebrvaHxGjsAzFWAdth8ma8PWBqmS1BmugZm+G8AmKsA7ZinnnhEUKatD+g2Wx4AcxWgDdJJ3TaYpwjKtHsA7W76+u4WHuwBYK4CFGVgkhl6MCvzFEGZQk08E7c91jubvp4u78wub7RMAOYqQBvm6VAWiCeC8sTnewVlpqvbEjANG7Ihs3+Sf7sv1mD2PfstFYC5ClCi3mxeHgoXP8GY3n98S6z7s6+bpwjK5O7eKf59jyUCMFcB2mDLLOctXMSh1wAAACAoAwAAgKAMAAAAgjIAAAAIygAAACAoAwAAgKAMAAAAgjIAAAAIygAAACAoAwAAgKAMAAAAgjIAAAAIygAAACAoM09sjbXRMgCYqwAVsyPWWsuAoEzZ0gO5XbEGLAWAuQpQsZC8PdY6S4GgTJlWZA/mdlsKAHMVoELWh8YTjgctBYIyZduZ1ZClADBXASokPem4zTLQiu4Wv6+vpN+nr8TrrtfMrY61penzdAjLgdB44uW1sT4Y643Zv/Vbw3nb65QRa67qZa7qZa6W8Fh2ZaxzJd0Gdb0q3+vWWHdml9dl8/ThWHfF+lys07F6QuNonX5rOG97HZvqm+xRJk8PxnouG0gbmwoAcxWgXVJgvifWqvDyiby2Bif04gpa3aN8opXUnSO9qt0r/ewvh8ahgMl92ce7m77nquzjl3L+XdxendULc1Uvc1UvijQS63issyX0WqJXR/R6NNaZ0DjEejCbp2nv8U80fc/tsT4f66lYJ63hvOyVW1CGVuxvujyQfTxkWQDMVYA2OnnJPE3nfDiYU0hmjhKUKco+SwBgrgJU0O7Q2NsMgjKl228JAMxVgAraYwmYipN5AQAAgKAMAAAAgjIAAAAIygAAACAoAwAAgKAMAAAAgjIAAAAIygAAACAoAwAAgKAMAAAAgjIAAAAIygAAACAoAwAAgKAMAAAAgjIAAAAIygAAACAoAwAAQAfrtgTkbGOsgVgHYz1iOQDMVYAKWJHN0g2x9sZ6wpJwJfYoU8SDuX2xtsfaYUkAzFWACtgWqzc0nnTcm81XuCx7lMnT/qySnVndZ1kAzFWANnug6XLaqzzQNF9BUKYU6dCWtOdjl6UAMFcBKmRtrM1ZwayDcl9Jv09fidddr5lbHWtL0+fpUMADWf1MrHfFOh/r6Vj91nDe9jplxJqrepmrepmrJTyWXRnrXEm3QV2vyve6Ndad2eV12Tx9ONbhWB+K9bZYn4tVy3meur06q9exqb7Ja5TJ2ydi3R7r/bEetBwA5ipARfxaaBx2nULzPZaD2eoP+T3botfc6lXPajLpMMET1lAv3O56mat6masFWhNriV56XWJjNksfu8y/bwqNvczWUK/L8hpl8rQ1+zgYGq+l221JAMxVgApIh2AfzC7vzAoEZUqxL7z8/nRp+Hh/OgBzFaAK9mbzdCg0TuR1yJIgKFOWNHD2WAYAcxWgYp4InmxkGpzMixlbnxUAVMUXQ7gllZUAYDbsUWbGtmcf32kpAKiIHw7hF7OLX7AaAMyUPcrMSD2EFRPv1F5vnIkVANq+bco2TZttmwAQlGmHzb3xP73ZZcsBQBW2Tdmmqde2CQBBmXbYnk4ZOJRdthwAVGHblG2ahmybAJgNr1Fm2rLD2XbuapxmP71fyc70tVoIJ60OAO3cNoXGW2klB22bAJgpe5SZtvSgI9YjTZ8/4oEIALZNAAjKAAAAICgDAACAoAwAAACCMgAAAAjKAAAAICgDAAAAgjIAAAAIygAAACAoAwAAgKAMAAAAM9FtCcjZ+lgDsQZjPWI5AMxVgIrYmM3TvbGesBxciT3K5GlrrG2xDmYf77ckAOYqQAWk+bkhm6e7Y22yJFyJPcrkaU9WIRtCQ7HutSwA5ipAm106O7cHR+lwBfYoU5Te0DhMEABzFcA8paO0uke5r6Tfp6/E667XzK2OtaXp8x2xDmQ14VdjfTpWvzWct71OGbHmql7matm9joewNLvYPwfvh+bq5I9lV8Y6V9JtUNer8r1ujXVndnldNk8fjnW46XvS3uT7cp6nbq/O6nVsqm+yR5ki/Fys22J9yFIAmKsAFfJgrC/E+itLMf98KYRN72o8gZKL/lDOs7J6dVivHSHUdzSe+WmWTjzzeKwV1lAv49jtrte01YO5OtsF3FFv7EFyP5wf1sRaopdel9iYzdLHLvn6Q1lZw3nUK94RVmTbhqdjnWi1l5N5kaf0YG5XaJyZdUP2tXTymZOWBsBcBWijh7I5uj0L0sn+AlJZelKzN9TCIUvefvXG2c63N31pV6v/r6BM3nY1PZhLBj2gAzBXAdpsMKuBpq/tL6DPtlg7Y0IbiGHZezW3WS2Ee+uNbeiAoEw77bEEAOYqQAXdV1IyeyCG5BTM9gnL7Vd/+UiCFJDXxeCc9vSvEZQBAADKVAvvzM42ISy3PyRvDo29yUNhmifxEpQBAACE5TkZkmvhO2s/rdeNC8oAAADC8lwOydMmKAMAAAjLQrKgDAAAICwLyYIyAACAsCwkC8oAAADCspAsKAMAAAjLQrKgDAAAICwLyYIyAACAsCwk56rLMgMAALQhLIewNwvL66v26/36e1ZcM19DsqAMAAAgLF9k5PhNr37f9t6PnHl+3fb5GJIFZQAAAGH5opAcP+yKQXR5Vy28LX7+vvkWkgVlAAAAYfmikBxredOX2x6Wyw7JgjIAAICwfLmQ3Paw3I6QLCgDAADM87A8RUhuW1huV0gWlAEAAOZxWG4xJJceltsZkgVlirI11kbLAGCuAlTIiljvjrVWWJ5RSC4tLLc7JCfd/l7I2ePZx/SHvd9yAJirABWQwubuWL2xDsY61BFhuT5+KYXlgfh5roFxhiG5OSyH7pVPf3guhuTEHmXyNpA9mAPAXAWoisFYr88+do6C9izPMiQ3h+Vc9yxXJSQLyhThpCUAMFcBzNICwvLHw+sqEpJzD8unQ/iDqoTkpNVDr/tK+n36Srzues3c6lhbmj7fEetAVsnS7GO/NZzXvU7ZJpurepmrZfc6XsxamavVlR7Lrox1rqTboK5X5XvdGuvO7PK6bJ4+HOtw9rWe0Hitcn9HXa9aeE84FoPtXeGPwvVhU/jR8Hcz+TGf+eNrbzx3fuy3ay2E5OHhenfsG0ZH62NTfOuPHz9046KVa5/56Eyv3lAIv7M4hLc/GreFd4TwbMEzPN1ex/IKynSQE8+s/fjCnjBS1M8/d76+8MjRsVWLfndo/PO7/mPvtquv6vrJ3hW18Q344DOjrxyfTDcuuC2vnheGQ3ffjYfudusC2DZdSc9vHh/fBr30gZW3Fd3LtgkoVX/4pZgoPxo2hkfCn4Ut4Y7p7XX9+MdWvfr2Ny7+QMy+y/L+1RYtrL310N+/ctHa7//m7073/42J9cGY2t+6P4RNMST/XVWWu9WgfKKV1J0jvWYhPRBZtKhruKifv2hRGF5x9YKXnmk8Sxe+59U9g83/3tU1Otb4vjx/hzH3w87shbmqV+s/+8uxdmaf33fJv58p8HeYE9umCbVabXyD0VVCrzZtm7hYevLleKyzJfRaoldH9Ho0m5nbQuP1yJfO0zQbTub8d1veGvaG94TTcfi8PfzJdE7wlR1u/ZtpHGdrMKXR0bGuhT214e7u2lgr37/6+q43xj4vTucEX9lrkt/yhyHcdXcIf1vi/XBKXqMMAADQKZaHXwjTOMFXzq9JnkrLr1luPnHX3RXakzzBodfkrq+3a8gqAORqnyUAyMXu0Glnvp5Mi28dVXJIbg7LV3zrqEnObr1GUGbOu6Z/gaAMkC/vnwyQjz1z5ppMEZbbFJKnDMtVeguoK3HoNQAAQKeG5UkOw25zSG4Oy+/rxJCc2KMMAADQyWG5ac/yyImbTlcgJDeH5fE9y50UkgVlAACAORSW93WfPTgwsqRKv93bxm5ddFc4cH5dp4TkxKHXAAAAHW7kxE0f/IkLS89tWv78m/66+9zyqvxeXT/7/C3h7y/8wNh/W7W7U0KyoAwAANDpITl7TfKfvnTtV390eMkL71j+3IYqhOXxkPz5s9eMfeq6g/XNyze0+tZRgjIAAACzDskhe01yVcJyc0gOb1h8Ovvy2zolLAvKAAAAcyAkT2h3WL5MSA6dFJYFZQAAgDkSktsdlqcIyR0TlgVlAACAORSS2xWWWwzJHRGWBWUAAIAO8Td/ccPNYRrvk1xWWJ5mSK58WK5iUP6ZWBsL7pF+/nvTDVPC9Vkf69+V1Cu5c+hk/aq5NhCee35sVfxw6xy7vcq8H5b594W5Oufmaknzp2xlXa/x2+vosbGVRTd64dho74kL9d6zo/XF5ioF+Y1Yawv8+StibYp1b6zXlfRYpKxe6bq9M9bqOXafKPN6bdz4psX3rrux+6OthuSZhOULw/Xu554fueaZZ0fWvHhqbFmBIfk7Yfmf/t+aXynh76ujg3LaYH8w1kDBAyH9/C/ESjfIjgJ7bY21Ldbfx/q5WPcXvH6Ppwcj8Q599VyaPge+eP5Hnj8yekMJD+jKvL3KvB+W+fdF9ZirOczVORiUy7pe37m9jhwdvfar/3Th5kJD8tBY7+IF4dyRs/Xrvv7U8LqiFzF7YtpcnT9+Jasi71vp76U3m3F/Eop9EibNzw1Zrz/IAnpR0hNm+2L9mzkWlMu8Xvff/obFP/XAh/vf8Y2nR34oBdnp/oBWw/Lhb41cNzwSupcu7Trz1a8N/0CarwWG5HHDw+Gu921f8b6C/746NiinZ2M+FOvhgvvsj3Vf9oDuIwVv3PaExrN0qdcvx9pe8HVL12XvXNsqbVi/8GBfX9cLJbQq8/Yq835Y5t8X1WKumqvtvl7fub1ec3PP158/MramqEbX9C8Y+p5X9wwuWVA7d/XC2tCLL471FnnF0h6XwWdGXmWuzhvrs9D6jwX3eSD7u/nzWJ8oeJ7em/VLvX6r4Hk6GOv12ce5pLTrNXL8pt977DPXr3vV2u7ja1YvOHT4W6MzmqethOWb1vY8+8rV3c9ds7LreH//gufTk5BFhuSTJ8eWp5m9+R3LznzjiVe+rSo3bpWC8s7sj/XFkvqlZ4HfFRrH95eht4Q/opNzccu0sKc20oa2ZdxeZd4Py/77wlw1V6ut9Os1HIPlwp5wroxeL16o966+YcGzRfb4xtPD666/bsFhc3XeSHPtPSX2S3sn74i1e47MU7N0diH5ohN3jYyE7kWLajOep63uWT53vr5oaGis/4brFzxXVEhOnvzG8M03ret+Kl1eurRWmdcsVyUop2fo1sV6pKR+W7Ne6ZCFgyX1vKfEYUdn3F5l3Q/L/vvCXDVX+S6HvzV6wzXXTP5gKy/fPDxy3XNnxq5b2l07fdVVXaeL6pMOQzx/Piy+dlUpRzvRfunlJHtDeXtD0yHRn4r1xVhDJfX8ZfO0miY7u/Vzz4+uvu7a2c3TqcJyeqnMV/9p+PuWLaud6plkp1VeITm9TGblyq4Xli65KPhXIiy3KyinB1SPZbU1+8NMwyedCCa9Xmog5POajPub+qxv+no6pOVfxPpAjkPhcr2SfxXrh0Lj0MSiezF7ed9el1PE/XAyRf19US3mqrla6bl65kz9qnRodJFN0qGC1y3teq67K4x89WvDtxTV5+tPDt+yaFE4N/jM6CvN1TmpeR6k1+2mQ5LTHtd0qHLa07st5HPCoceaqlnqc1usIyG/w6Ev1ytJL5n5i9B4GU3RvZhlSH7yGyOvWrGidiK93GS2P/9KYfmW1yx8csPrFj4eQ/KFQ8+MrCkiJL90ZmxxDP1r0h7ydOKw4eH6ovj5denrVQjL3W3quyerCRMbzvR6unSijxdDPs/a3TvFv6e9Hhtyuk73XuHBaxpyd+S4fvcaHYWGjbxvr1Di/XAy2wr6+6JazFVztdJz9ftf2/OVshpe1RNOnzlbv66on/89N/d8dfxB7Eh9Qfxw2Fydc5rnQZqhm7PLr4j19mzO5bGn980tzNM7c7pOl+v1UKxFsX49x/V7s7tQMSH5K/9w4ZZ6vd5186sWfiOvPiks/+Sy529JYfkzp687+KaRi4Pv8mW10y8cG3tF3iE5SXuqX/u9jW3DhQv1nqGTYyuXxX5Ne7BTWA7dK5/+8HwKypeaeAarP9ZbYh2LdajADXZyIhR/mMnW7A7+H2L9YGg8+5iG3kl//pV9MFfW7VXm/bCov6/7s/XZ6z5dSeYqlZqrp06P/erZc/XFV1/ddbqIc0+kw67Tx1Wj9cXHztWvWXVNV2GHeU/syTl/fqwnC8rm6tx1smmersmeFCly5uzIfn5/FtjfX+B1SyE5PbGZTuR1e7pLh/z2KlNASD5zpr48ncjr+ImxFV1doZ7HXuXJwvK1X1twzVXLa6cvDIeeb397dM3aGxc8nXdITtK2YOI6nDkztujwt2qjVy3/rm3ETMJyemyQnlDfF2bxErTuCt439mUbnCJ//kBovF9cGgyfL/j6pDv5D2SXz4TGM85FbvwOXH1V10/OtYERr1PaMB0ooVVZt1fZ98Mi/r72Zj8vZBv1fbMdSJirVZ2rc/R+Udb1Gr+9Tr5Yjw/s6mNLltTOFRGUV/Z1DcUHj73nRsPi65bWnlv9moVPmqsUYE8o9uiBvdk8TUcr/FSsrxXYazCrfx7rbKzhEoLyn4bGk0tzTW7Xa7KQnKSTd6VKbwPb1VUbq9XyC8qXhuVPXf+KJ19ztGdxvR5q3/fanq/E8Ho275A8mVesWvDckiWTnqRsumE5PXE5FF5+d4eJWZo+f6LV36fWwvf8YPbxyyXcyfTKodexwRt/f8XVC14qutEz9xxNgzzc+NFV+4rudfLF0WX96575xY65vephRfzrOjkP7ofvDpOf4Ti9dc9nYv3ZdAbSPGLW6XX56dH69tm2abIHNu87tm58IT/cP1h0r4K2TcXN1da3TZ3kx7L1f14vvZpsbApHb+6U63W5kNzsyNHRvquvqp1evLhruIgrksLyX/acvSbtWX7Nt3t6Uq+lv3D01UWH5Bav12enuWc5vX3f5ku+lgL038b6dKz/Ha5wNFArJ/PaklUZ9Mqh15GjY6vmWqrIrlMn3V4D8QHJ47G2jj8wmbv3w/TWQ7sn+Xo6CUnas5j2iJzIBlU6BHNtwKzTa17eD22bKjFXW902dZL02tpb9NKr0++HrYTk5JvPjqw9/VJ9WVFXpPkEX589duZ7R7cdWV90SJ7G9ZruCb62he9+J450Yr5/GetjoXFERTqsPL0MIZ2476K5mJ6xrnvMegU7Ou9X/vmfXl5Kn82/d2H8495/v7CUfv/9k6c764aYOEfmxIEfafTZtxqyobQvW5W5ejihuYptk21TeVbGuXpbnKs/3NIhwd+9dapVdus0sVcQ5rRX39Qdfvc/9Yfly7sq8zt9eMNQ+OnfPBt+9tO18Hj83U6/qqcyv9v/+ssz4SMPFHZwzMTLXnZ3u2sCJRtqKgBma1mcp68wU4H87N4WwpIvhfDmx0L4+TMh3PzivHqcOpgutPIaqInnre8r4RfTK4de//h/12wr+r0qkzJfo5zejPy1/+zZ3R1ze9XHD9/YGRr7kfde4TVhc+F+mA5X2XaFf0/3xX3h5ZPUOJOrWafXlaZHQ22urWFZ26YyX6Nc4LapmLna+rapkzyWXaf9eunVpOzXKM/6erV66PWXHj+/Ye2N3YN5nsjrUhMn7nriI/0jv3HXSyP7+84tnuyto/I0jes1ndcpr8juA1d628qDTfP0otuvlT3KZZ7tU68cejnrdSVur33xAcjr58H9cMckD+bSgPubWP8zNE46cyhg1uk17++Htk2VmKutbps6SZlnUdars3p11P0whr+nYljePlVYXrmy6+jiRbXzRYfk9Jrk5TcsWPGJl5Yd//nlR9de7n2W89Li9Zruybz2ThKSB2N9Mdb/CI2TeV32CUNBeQ726l1ROzXXpk92nTonKLf+LH0n3w/TSWR2fufB18t7NtJr3fqzrx8LmHV6uR/aNlVjrtbm5BE9D5e4rdGrs3p13P2wlbB87aoFLyxcWCvkjNeXvgXUtWfGhlOvS99nuYiw3ML1mm5ITkfmDITGE43N8zQ90bgmu73OXvH28HgVmOljxGwA7bcUAOYqMHut7lkuOiRf+u9lhOUcQ3I65DodUp32Js/4ZIVd7o7ADD3gwRyAuQrkH5ZD4wz1pYTRqUJyc1ieeOuov+4+V1aIn25ITk5m83RWZ/QXlAEAAOZhWG41JLcpLM8kJOe3Nu6GAAAA8yssTzcklxyW2xqSBWUAAIB5FpZnGpJLCsttD8mCMgAAwDwKy7MNyQWH5UqEZEEZAACgQ8JyfZZhOa+QXERYHqtXJyQLygAAAB0Slj/56dP3jY2FM1UIyXmG5eeOjP7V0msHd1VpvQVlAACADvBL248deuIrF94bprlnuaiQnFNY/uxrfujZ/1K1tRaUAQAAOsQb3vKtJ8M0XrNcdEieZViu1OHWgjIAAECHavUEX2WF5BmG5cqGZEEZAABgDoblskPyNMNypUOyoAwAADDHwnK7QnKLYbnyIVlQBgAAmENhud0heYqw3BEhWVAGAACYI2G5KiF5srD8xz2nD3ZKSBaUAQAA5oAFK59+f+3RM4vHPnntX1chJDeH5fWjC7/y08uPbgv1sF5QBgAAoHD1EB6KHzbHGghvWvKLYZrvs1ywz/6fnvOvjx/3xtrXKWFZUAYAAJgDIbkWwhOtvnVUWSH5O4db18I7OyksC8rk7puHR6574dhor5UAyM3WWBstA8CsrIj17lhr52pInvh6RcLyd5+4q4PCsqBMrg588fyPfPvbo2tODI0JygD5eDx7sDNgKQBmbP14OGvM03VzOSRXJCxf/uzWHRKWBWVytWH9woN9fV0vWAmA3AxkDygAmLnBWK/PPs75kNzmsDz1W0B1QFgWlMnVwp7aiFUAyNVJSwBglk6IifcPWgnJbQrLrb9PcnNY/nh4XdXWubvF7+sr6ffpK/G6z9leF4bT7TpWWINz5+sLjxwdW7Uo+/zrTw2vu/qqrhd7V9ROpc/HxhpPwJw/P9aTV8/GdXI/7LBep2yTzVW9WrY61pamz3fEOpBVsjT72G/bdGU99fr4Nmg4x21QhbZN5urkj2VXpocnJd0Gdb0q3+vWWHdml9dl8/ThWIcnxkRovFa5vxPXcCiE31kcwtsfjduMO0J4ttXrEcPr0Mc/tuoDP3HH0g8s6ArLWvl/hofr3THMhtHRekvD+4XjY/vXfv83f39aa1sL7wnHwvJwV/ijcH3YFH40/F1J98NjeQVlOunR942H7o4fThT9gC5OnZ3pk/s+eXowfvhUVsl7s48f6dAHdADtNhDrSFNQtm1q0bFsG9T/+6c+UsbVcleFSuvN5uljTUG5Y8X59uDyEN66P4RNMSRPO1De/W+PPvWZP7721za+afFvx/y7PM/f7fyF+p/HkPzRGf3P/eGXwlD4aNgYHgl/FraEO6beS16GVoPyiVZSd773A70q3Cv97C+HLChHb77k388U+Du4vTqrF+aqXuZqqb1WFrtW5mr1pJd8HY91toReS/TqiF6PZjNzW6yDk8zT4dA4DPtYJ12v7DXJb/nDEO66O4S/nWmvd/zr54+NHL/pnnhxV5giLI+OjnUt7KkNd3fXptqj/Nll17d4uPXln9J4TzgdxsLbw5/EKzsQaoWG5SWtfJPXKAMAAFRU84m77g6zPzQ559cst/6a5KksD78QKnSCL0GZIuzLCgBzFaBKdocOOvN1q2e3blNYzi8kT6jQ2bC9Rpki7LcEAOYqQAXtme8huTksjxy/KYXlKQ/DLiUkN4fl+vilfSUchn1Z9igDAADMo5DcHJbD9PcsFxeSm8Nym/csC8oAAADzLCTPMCwXH5IrEpYFZQAAgHkYkqcZlssLyRUIy4IyAADAPA3JLYbl8kNym8OyoAwAADCPQ/IUYbl9IbmNYVlQBgAAmOch+dKwHH+v02P1CoTkNoVlQRkAAEBIvigsf3jX0HuXXju4q1ILVmJY9j7KAAAAQvJFfut3Tr5QyYUr6X2WBWUAAAAhuXOUEJYFZQAAACFZWBaUAQAAhGRhWVAGAAAQkoVlQRkAAEBIFpYFZQAAACFZWBaUAQAAhGRhefZhWVAGAAAQkoVlQRkAAEBInhdhOYShWOvi1/cLyrTL+jQQYg3GesRyAJirABWxMZune0OB4VVIrmBYDmH3eFAOrQflLitIjrbG2hbrYPbxfksCYK4CVECanxuyeZpC06aCQvK7heSKheXGbb59/Haph7Wt/q/2KJOnPVmF7A6ZDnG417IAmKsAbXbp7EzBqYijdFII3xtD8iFLXgH18SdIBi653f9zK/+rPcoUpTc0DhMEwFwFmBfzNAbkk0JyhdTGnyBJt/fO7Dbf1ur/2uoe5b6Srkpficum18ytjrWl6fMdsQ5kNeFXY306Vr81nLe9TpnO5qpe5mrZvY6HsDS72D8H74fm6uSPZVfGOlfSbVDXq/K9bo11Z3Z5XTZPH451uOl70l7F+3Kep26vqvaqjf/398brS2FTeFd4ffiv4S/yCspwJQOxjjQ9oPu5WLfFeoulATBXAdqkN5unjzUF5QdjfSHWX1meeeiHxw+3vyGvH9cfynlWVq8O67UjhPqOkJ1L7mXpxDOPx1phDfUyjd3uek1bPZirs13AHfXGHiT3w/lhTawleul1iY3ZLH3skq8/lJU11GvKXvYok6f0YG5XaBz7vyH7Wjr5zElLA2CuArTRQ9kc3Z4F6WS/ZUFQpiy7mh7MJYMe0AGYqwBtNpjVQNPXBGUEZUqxxxIAmKsAFXSfJWA6vD0UAAAACMoAAAAgKAMAAICgDAAAAIIyAAAACMoAAAAgKAMAAICgDAAAAIIyAAAACMoAAAAgKAMAAICgDAAAAIIyAAAAVEy3JWCmdlsCACrmkRAetgoACMq0zSFLAEDFbA7hsFUAYLYceg0AAACCMgAAAEzOodfkbWOsgVgHw/hLxQAwVwHabkU2SzfE2hvrCUvCldijTBEP5vbF2h5rhyUBMFcBKmBbrN7QeNJxbzZf4bLsUSZP+7NKdmZ1n2UBMFcB2uyBpstpr/JA03wFQZlSpENb0p6PXZYCwFwFqJC1YfwE+eMFsw7KfSX9Pn0lXne9Zm51rC1Nn6dDAQ9k9TOx3hXrfKynY/Vbw3nb65QRa67qZa7qZa6W8Fh2ZaxzJd0Gdb0q3+vWWHdml9dl8zS9v3p667gPxXpbrM/FquU8T91endXr2FTf5DXK5GEgG0TJJ2LdHuv9sR60NADmKkCb9GbztDf7/NdC47DrFJrvsTzMVn/I79kWveZWr3pWk0mHCZ6whnrhdtfLXNXLXC3QmlhL9NLrEhuzWfrYZf59U2jsZbaGel2W1yiTp63Zx8HQeC3dbksCYK4CVEA6BPtgdnlnViAoU4p94eX3p0vDx/vTAZirAFWwN5unQ6FxIq9DlgRBmbKkgbPHMgCYqwAV80TwZCPT4GReAAAAICgDAACAoAwAAACCMgAAAAjKAAAAICgDAACAoAwAAACCMgAAAAjKAAAAICgDAACAoAwAAACCMgAAAAjKAAAAICgDAACAoAwAAACCMgAAAAjKAAAAICjDd9kaa6NlADBXASpmR6y1lgFBmbKlB3K7Yg1YCgBzFaBiIXl7rHWWAkGZMq3IHsztthQA5ipAhawPjSccD1oKBGXKtjOrIUsBYK4CVEh60nGbZaAV3S1+X19Jv09fidddr5lbHWtL0+fpEJYDofHEy2tjfTDWG7N/67eG87bXKSPWXNXLXNXLXC3hsezKWOdKug3qelW+162x7swur8vm6cOx7or1uVinY/WExtE6/dZw3vY6NtU32aNMHgayQfRgrOeygbSxqQAwVwHK1pvN03TI9T2xVoWXT+S1NTihF1fQ6h7lE62k7hzpVe1e6Wd/OTQOBUzenH38h6bvuSr7+KWcfxe3V2f1wlzVy1zViyKNxDoe62wJvZbo1RG9Ho11JjQOsT6YzdO09/iZpu+5PdbnYz0V66Q1nJe9cgvK0Ir9TZcHso+HLAuAuQrQRicvmadDWYg+aWkQlCnbPksAYK4CVNDuWIOWAUGZdthvCQDMVYAK2mMJmIqTeQEAAICgDAAAAIIyAAAACMoAAAAgKAMAAICgDAAAAIIyAAAACMoAAAAgKAMAAICgDAAAAIIyAAAACMoAAAAgKAMAAICgDAAAAIIyAAAACMoAAAAgKAMAAICgDAAAAIIyAAAACMoAAAAgKAMAAMA80d3i9/WV9Pv0lXjd9Zq51bG2NH2+I9aBrKyhXhO9Thmx5qpe5qpe5moJj2VXxjpX0m1Q16vyvW6NdWd2eV02Tx+Oddga6tXU61geQfnkNAL1bJW5AdCrs7i9Oq/Xix6/mat6mat6masFOxpraUm9Xog1olfH9CqT26vzep03PilSPSsAzFWAqtiYzdLHLAUz5TXKAAAAICgDAACAoAwAAACCMgAAAAjKAAAAICgDAACAoAwAAAC5+v8CDAB7dYGbnQtBUQAAAABJRU5ErkJggg==" alt="" width="521" />
先旋转-后平移, 首先旋转,后移动到自己的旋转坐标系
 
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA8oAAAEgCAYAAABsL4r5AAAACXBIWXMAAAsTAAALEwEAmpwYAAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAK7JJREFUeNrs3Q2YXHV9L/D/bjYJgcBmE5EIkSxiW71tTbSWe6vSLLW1SG0J2oerVG/Cre21tUpQfGm1TRC0aHkkPNY+3GpvQqt4q7ZEby1aqyS+9SnSuvjS+gJmg6K85WWTkBeyu3P//52zMMYkO7N7zpkzu5/P8/yY2cmy/5n/OfOb851z5kwIMHUXx1plGgD0VYCKucEUMB3dpoBpWB1rwDQA5NpXV5sGgFz66cWmAWiH7bG+YhoA9FWAClkeqxbsVQba2IBS9ZoOAH0VoCLWZL3UG49MmUOvmaqB41wHQF8FqEI/XRm88QiU7Nbw+J6PTaYDQF8FqIjdDf10jekA2tWAtpsOAH0VoAJWNPRSbzwCbW1AqZabFgB9FaDNrjiql3rjkSnpafL3lpgqGlx0nNs+bGpoMBxrxDToq+ir6KsFb8v6DCqNfuWon/tjPSPWfaaGBjsn+4VmTuaVNub6SrrDfcbqiLF+7Ri3/bo5NNZRYwmC+qqx9FVj6atFWxbrpJLGOtNYHTFWO/qp5dV5Yy2Y7Jea3aO8u5nUXWbCN1Zbx3ruMW77hZIen+XVWWOhrxpLXzUWRUp72HfFOljCWAuMVfmxVh3n9mcX/Dy1vDpgrFoIF8eLwa76NtikfD0Urbr4OLcvCvXP2AGgrwK0w+rj3D5gamanGI57Y62v1T+rvjmG5B3N/r+CMq0amOK/AaCvArSjn5bzxmMt9MZyIsbqhOQb4sWeWBtC/bPqm1v5/wVl8tygW216APRVgDZIJ3Vb2eZ+ujbWYExojgaqgK4QrowXWxtu2igoU0YD2txw++YmNvYA0FcBijJwjB46mFU5/bQr3Bj/u2U8nAnLbVerf4f2yiwgb2nlsGtBmVZNvBO3LtblDben6xuy66tME4C+CtCGfronC8QTQXni5y2hrDceu8b7t7BcjZC8OlvuG0OLe5OTHtNIC1ZmK9u2Y/zb1bGGst/ZZqoA9FWAEi3K+mXaa9j4BmP6/vFLQv3zqqtK6acpLNfGr6WwPBB/vsviaU9I7gqPzf2OVv+OoEwrrpzk3282RQD6KkAbXDLNfissz9yQPCWCMgAAgLAsJAvKAAAAwrKQLCgDAAAIy0KyoAwAACAsC8mCMgAAgLAsJAvKAAAAwrKQLCgDAAAIy0JyrrpNNQAAQMlhOYQtWVheUbW7N7LrnDNmc0gWlAEAAITlxpB8brx4/7f/fdlrZmtIFpQBAACE5caQvDHWwqVPnHP+gQf6183GkCwoAwAACMs/EpIfC4td4cJ4+5tmW0gWlAEAAGZ5WD5WSG7QtrDcrpAsKAMAAMzisDxJSG5bWG5nSBaUKdKaWKtMA4C+ClAx62MtF5abDsmlh+V2h2RBmaKsyp5wA6YCQF8FqFhITieo6q/sPSwpLLcYkksLy1UIyYIyRejNnnCbTQWAvgpQISl0DsQarPw9LTgsTzEkFx6WqxKSBWWKsCGrPaYCQF8FqJAUDNd2zL0tKCxPMyQXFpb3h/BXVQnJSU+Tv9dX0v3pK/GxG2vqzop1ScPP6RCWO0L9jZenx7o21nOyf1tiDmftWPu8HuurxtJXjaWvlrAtuzjWoZKWQc1YlR/rvFiXZtf7s356a6yXxvpsPY+FuaF+tM6Syj+urnBV2BkD7eIYlu8MLwrPDnunM9YnPnLG2YcOj/1pVxMh+ciRWk8cP4yO1saO8yu/vmvH2fMXL7/3vdN9mHtCuP6kEF54W3wtvCiE7+e4bI63vHZO9kv2KJOnm2LdnzWkVQ0FgL4K0C4pML861unh8RN5rQlVPaHX0ZaEV4WR8PGwMvxjeEf42an+mQ+87/Rzz3/OSdd1TW9P8o+YP6/rBTu+8eTXTedvxMR6U7xDL9wWwsUXVWBP8uPvUTSzaB57DCWsBsbqpLFqR61HjRtva7PLDbF2mENjYbkbS181lr5agGXZnBw0lrEapN65NasLQn3v8cqGf58470Oq4Y55XLWwKYyGF4eHwvPDk8KdrfyvUznc+sCBsfnz5nUd6enpGmvi1z/Zs3j7O6fwojf+meQPhnDZy+vLqzLrYU+A/GxruD6QXe4wLQD6KkAbDR/VT9M5HwZzCsnlSZ9Z3h/mh6Xh0zFhDsSfm9r7mtNnkieTPrMcWgnLjSfuenkF3wQUlCnKVlMAoK8CVNDmWEMdec8XhjeOf8r6lPETfE0alksKyS2H5WOc3XqZoMxssc0UAOirABV0c0ff+4Xht2PS/IsQThyWSw7JTYflKn0F1Ik4mRcAAEAnmeSro9oUkhvD8ps6OSQLygAAADMoLLc5JB83LHdSSE4ceg0AANCpYbn+fQnjh2GP7D5nfwVCcmNYHj8Mu9NCsqAMAAAwQ8Ly1p6DgwMjC6p07y4cO2/+S8Mdh/s7KSQnDr0GAADoYCO7z7n2Nx49+dDFCx943hd6Di2syv3q/q0Hnha+8ejPjP2f0zd3UkgWlAEAADo5JGefSf77R8745vOPLHj41xbev7IKYXk8JH/u4BPGPrx0sLZ64crjneBLUAYAACD3kByyzyRXJSw3huTwCyftz26+sJPCsqAMAADQ4SF5QrvD8nFCcui0sCwoAwAAzICQ3O6wPElI7qiwLCgDAAB0iH/55zOfGpr4Cqiyw3KTIbljwrKgDAAA0AFu2rhk+Yqfmfeu0OT3JJcVllsMyR0RlgVlAACAikuHW7/sNxeu7+4OJ7fy/xUdlqcYkisflgVlAACAiofkeLGxq8k9yWWF5WmG5MfC8rf/fdlrBGUAAABaCslhiiG5qLCcU0get/SJc84/8ED/OkEZAACAUkJy3mE5z5D82N/sqtZh2IIyAADADA/JeYXlIkJyg8qEZUEZAABgFoTk6YblgkNypcKyoEzeVsVaH+tiUwGgrwJURG/WR1M/XTGbQ/JUw3JJIbkyYVlQJu+NuYFYW2OtyxoRAPoqQLutjbUo1mCsLVl/nbUhudWwXHJIrkRYFpTJ07ZYV2eXG7KNOwD0VYB2uzHWzbE+FmtzFftp2SG52bDcppDc9rAsKFOEdGjLuuyJDoC+ClAVy2OtzsLyrA/Jk4XlOWse/Kk2huS2huWeJn+vr6T701fiYzfW1J0V65KGn9OhgHdkdVms34t1ONb2WEvM4awda5/XYn3VWPqqsfTVErZlF8c6VNIyqBmr8mOdF+vS7Hp/1k9vjXVfrOtS6Ir12VhdOffTKT+uT3zkjLMPHR77064mQvKRI7WedM9HR2tjeU/chw6ffs9/731wTgrLH99zxtd+8ZV7z5rz+YOLD91yxjdqz5p3OBwem1vUQmvicf36rh1nz1+8/N735rS8dk72S/Yok7dbYp0f662xbjIdAPoqQEW8OdbKLDS/ugp36APvO/3c859z0nVdbdqTfLS/HX7it3/pyIKH773y/memkHz4Q2d8vXbe/P1VuG/z53W9YMc3nvy6ssZrdo/y7mZSd46MVe2x0t/+aqh/Xi65+hi/84VYTy/gflhenTUW+qqx9FVjUaSRWLtiHSxhrAXG6oixbot1INRP3jV0nH76r9m/72z343rpSxamE4w9GmteM78/OjrWPW9u15Genq6xoibwY6tDGP5SCL/4uRCuObdr9Pyx7iNFrxjNPq6zntS9N4fltqCZX7JHmTytySqdRXBzqNhnPwD0VYBZa+Jr9lJtqEo/7Vm8/Z5QPwdFJfbaTpy469RbnnRn339ZsPNFp92/opXvWS7YJ+N8vbO0ufCcIUdbs8uVWQO60pQA6KsAFZC+Eqo/1L8iKp3M62NVuWNVCctHn936gztP/+4vHV6ws9nvWZ5JIXl8uXjOkKMdoX7afQD0VYAquSurSkpheWTXORPfblB6KD3eV0B9ZN8Tv3Vp94M/mcLyJ/YvHXzeSFvOfF16SB6fE88ZpmpFVgAAwPTDcmjDnuXJvid5su9ZnokhWVBmWtZlBQAAdF5Yniwktzksty0kC8pMWS2E3vThjtXZdTMCAACdE5abDcltCsttDcmCMtOxOp0JYVF23XQAAEBnhOVWQ3LJYbntIVlQZjrW7Yn/2ZNdNx0AAFD9sDzVkFxSWK5ESBaUmZLsUOsN6ZR8G+s3bXD4NQAAVDssTzckFxmWx2rVCcmCMlPSFcJwV8N3z6Xr6TYzAwAA1QzLeYXkIsLy/Q+Ofv7kM4Y2VmneBWUAAIAOCMu1KYblvENyzmH5kz/5rO+/p2pzLigDAAB0QFj+0Ef3Xz02Fg5UISTnFJYrdbi1oAwAANBhXrVu5467vv7oG0OTe5aLDsnTDMuVDcmCMgAAQAf5hV/+wd2hic8slxWSpxiWKx2SBWUAAIAOM9kJvsoOyS2G5cqHZEEZAABgBoXldoXkJsNyR4RkQRkAAGCGhOV2h+RJwnLHhGRBGQAAYAaE5aqE5GOF5Y/M3T/YSSFZUAYAAOhwcxZvf2vXbQdOGvvQGV+oQkhuDMsrRud9/WULH1obamGFoAwAAEDhaiFsiherYw2E5y14ZWjyq6NK8skvzT38zHi5JdbWTgrLgjJ5Syv/FbEuNhUA+ipAhayKtT7rqzMuJHeFcNdkZ8MuOyQ/drh1V7i808KyoEye1sRaG2swu7zBlADoqwAVkPrnyqyfbg4z4M3Ho0PyxO0VCcs/fuKuDgvLPZ4z5OjmrELWhPbEutK0AOirAG12dO9MQfJjMy0kN4blkV3npMe4MdbCtofkxrBcG7+WwvJA/Pmuqs6xPcoUZVGsIdMAoK8C6Kf52R/CX50oJDeG5VD+nuXJvwKqQ/YsN7tHua+k+9NX4mM31tSdFeuShp/TZz3uyGrCG2J9NNYSczhrx9rndVhfNZa+aix9tYRt2cWxDpW0DGrGqvxY58W6NLven/XTW2Pd1/A7KTxenXM/LWUO94Rw/UkhvPC2+JpxUQjfn+wxxNC65wPvO/2a37jo5GvmdIdTWhnryJFaTwy1YXS0NtbM7z+8a2zb8p/+3vubmteucFXYGRbGZ+/WcGd4UXh22Fvyerhzsl+yR5kivCLWc2NdZyoAZndf/bcQLr4zhN+1CIGKuCnWF2N9vtPueEx2Ny2MIXlb7KsXheYPWX757zx0z+e/dOjNtQL3LB9+tPZPMSS/u6X/aUl4VRgJHw8rwz+Gd4Sfrdp8dzX1EB5bNoUzVgeNtb7+rk96O65xPUonnknv0g3EGjaHxvJ6bLkbqyW1Y7w+d1xfjQ+iN9RPPpbud/+/h/DbP1f/LKB1Q1/N27JsTg4ay1gN0tmtt2Z1QcPtm7LLyzvtcU18JvmDIVz28vrjanmskV3nnBta+MzygQNj8+fN6zrS09M12R7lyQ+3PvGD2xRGw4vDQ+H54Unhzqqsh/Yok6c12ZNvQ6ifVTA1qV7TApQQL9foq1VZFOP3cTC73/2xhn6ug0+YA8wYm7I+ujnrpas65yXu8RN3xZD8tan+nYI+szy9kJykzywfCp8IS8Onq/SZZUGZvG3MmtBAVotMCVDwFkTv+At/7bE9BfpqG3WFsC0L9o33H6DdhkL9BFIDDdVRIbkrTP8M0TmH5emH5AkLwxvDI+G2UKETfPl6KPJ0sykA2pDMhse/YqL+4ropO5umvtq+jbq0F3xzqB96vSG7bnsDaLerO7Cf5hqSG8NyDl8dlV9Ifjws/3Z80H8RKvLVUfYoAzAzwnJ978DKGbxnuaNCclc95KfLYTMDUI2Q3BiWw9T3LOcfkh9/Pa/MV0cJygAIyxQRkicOwwagQiF5mmG5uJBcsbAsKAMgLJN7SAaguiF5imG5+JBcobAsKAMgLCMkA8yykNxiWC4vJFckLAvKAAjLCMkAszAkNxmWyw/JFQjLgjIAwjJCMsAsDcknCstjtTaG5DaHZUEZAGEZIRlgFofkY4Xl+x8c/fzJZwxtrMjreelhWVAGQFhGSAaY5SH5qLD8yp981vffU7HX81LDsqAMgLCMkAwgJDeG5Qcq+npeWlgWlAEQlhGSAYTkTnk9LyUsC8oACMsVccopXeG5/3W+kAwgJNPmsCwoAyAsV8DIrnNOeffbl4S3vWVxuv6rQjKAkEz7wrKgDICwXIGQHC82PvUpcyduenMVwrKQDCAkz9awLCgDICy3MSxPhORYTz3qn9oaloVkACF5NodlQRkAYblNYfkEIbmtYVlIBhCSZ3tYFpQBEJbbEJabCMltCctCMoCQLCwLygBQelhuISSXGpaFZAAhWVgWlClO2tBaZRoAYTmXkBy+d9/I0od3jl5XZFgWkoFZoDfWFbGWC8mzKCzX4vKutZ5NeswkOftKdplWzm2mA+i4sFwbD8tbx8Ny/cW2rSH5jjsPPztd9vV1P/yEJXPSnuXQs3j7p4RkgJasyPrcoliDsXYIyTM8LNfGr23Nlnt/q9nEHmXyNpCFZIDODcsF7FmeSkhOVq6YN5hCcsNNuR6GLSQDs8RQrGdml4Wo1fdWC8lVCsv1N0XWjS+XWmtHEgjK5G3YFAAzKizvDDe1KyQn8+Z2jRzj5lzC8rdCeIWQDNhGzU3qpyuF5IqohRuy1/IJ61r535s99LqvpIfTV+LUGWvqzop1ScPP62PdkVVycna5xBzO6rH26dD6akePFbd0wlXhJeFt4R/CwXBjWDC+p6Blv3v5qScfPDR2TXfX8UPyocO1eQ8+NHb6xM/fuedI/2mndu9d1Ns1/jwaG6u/sX348Njchv/tj+8eXHbyU1d+/3NTuV/3hHDZU0K44dshXPlTIT7GfHu29VBfLUvall2cnkYlLYOasSo/1nmxLs2u92fbqbfGui+7LfXR3gK2U2td9ce1v4R+at1o7nX82vg6/p7wmvDasDS+ns8La+Ot12Zj7cwrKNNBdt+7/APz5oaRov7+xAbd/HfvGf/5pa9btDZu0L14YoNu6N7RJ493prPnPDevMR89Enr6zt7xcksXKNX1YTgMhcvCX4dbxvcsLwmvauV/v/y3Fp7yjj/p+9MYkgs5ccyTzpjz+i/ffub8n7/gB59u5f9Le5JTSP5uCK+NIfkWCxqAGfs6fn24Jl67JjwYnh+2hLPGD8JuQrNBeXczqTtHxpqGFJLnz+8+UtTfnz8/HOk9bc4j99bfpQs/ce7cocZ/7+4eHav/Xp73Ycx62Jljoa92/lgfDanbvSj8Wfi7+NJ6fbMn+MoOt74u1pmxjjTTV3/ww9GW++ozV8z/X3Gs3c2e4Cv7TPLEnuRbrBv6aodLOwZ2xTpYwlgLjNURY90W60CstaH+eeSrj/r31EeHc37eWl6dMNYTw4eza8ua+XWfUQaAyVzf2gm+pvOZ5Clq6jPLjSfuiiH5byxYABCUKUnfou49qcwEMKM0eTbsIkJyk331hGHZ2a0BxqU+OGQaEJQp3ROWzNmTykwAsy0sF7UnuYW+esywLCQDPCb1wB2mAUEZAEoIy2043LqpsCwkA4CgDAClh+UKheQfCctCMgAIygDQlrB84cIfDlYoJNfv3l8MbxSSAUBQBoBSjew+Z+TePU8e3NE9svTFpzzwtAqF5KXdb931tLFrF39zdNc591tSACAoA0DxITk73PrMWk//5/adOfifcx5dWIWw3BiSa7/fm0JyU18dBQAIygAw7ZAcssOtT6/NGalCWD5GSJ4gLAOAoAwA5YTkCe0OyycIycIyAAjKAFBuSG53WG4iJAvLACAoA0C5IbldYbmFkCwsA4CgDAD5uPy3Frb0PcllheUphOTHwvKXbz/zVyxZAOicoHxZrFUFj5H+/htjXVjC41kR63dLGiu5dM9w7dSZtqLe/8DY6fHivBm2vMpcD8t8fqGvzqi+uuzMOZf+4esX/Xlo8XuSiw7L0wjJ4xb3zbn6Mx9f+iJ9VV+lJW+JtbzAv98b6+JYV8b62ZKeM2WNlR7b5bHOmmHrRJmPq6zlVfZ6WNbzq6ODcgpC18YaKHgFS3//i7FeE2t9gWOtibU21jdivSLWDQXP31fSxsjefWOnzaTuc8edh5/9wIOjZ5YQlMtcXmWuh2U+v6gefXUaTl3Y9Z23//Hid42OTm1DoaiwPN2QPNFXz3xSz4aCD8PWV5lJXpNVf4FjpOfLouw583eh2Ddh0vNxZTbWX2XBqCjpDbOtsf7nDAvKZT6uMpdXmethmc+v1l5rm/idJdnlzhLeufhcFva2x7q64PGWZAs9LZALShgrPb57mpzz6czhuv/88rK1P3Hu3KGiV557X/3Q+IbB2e89fWuR4zx6pNaz496RZU//+e9vLmG9KHN5lbketuP5VUbf6FT6agc8T9Nnku9/YGTzvv21Z6efp9NXH+oa7fnFU3+w8umj8/b//SNnfPN4v7ftC4fG++qq5520taiQ3NhXGx7XdT2Lt39KX9VXO9CybE4OlhCI/nd2/U3p6VrC40rr8IES1q001vmhfuTHBQU+X4Zj3R5rQwnztyoLsFtL6ANlPq6yllfZ62E7nl+T9o0q7VFOK9eNsfaWNF46PPn3Qv0zZ2VI78oUHV6HZ+Ir4Ly5XSNtGLaM5VXmelj28wt9taOfpxMn7lp6Rs8T8vh7ee1ZziMkH6evlnGCL32VTpbWp6tKHC/tnbwo1uYZst0zPEPXi3Y9rrL6aVnrYdnPr6ZUJSind336Y32spPHWZGOlDaDBksZ8dYnNjs5YXmWth2U/v9BXO7qvNnt267LDcl4h+QSKDsv6Kp0qHca/paRgkqRDbD8c685Ye0oa8/dtp3aUMpZXWeth2c+vygfl9EJ2e1ZrsgWdJiedgCN93mcg5HMs/A0N46xouP3mWL8U65ocV7LjjZW8JNazQn6HLJxoLKYv7+V1PEWsh8dS1POLatFXcxjrtFO7vjz4tcP/kHdInm5YLiEkFx2W9VU6SWPvSZ8DXRfqe/DSiY3SHra1IZ8TDt3eUI3SOM+N9WA2dihwrORdsf455He464nGYvryXl7HU8R6eLTlBT6/pq2nTePenNWEiXcQerONk705vatw5ST/nt5tXpnjynS8jde0AlyU84pLcWEj7+UVSlwPj2VtQc8vqkVfneZYRe1JPl5YTp9ZTmH5RJ9ZLjkkN4blkONnlvVVOk1j70nLeHV2/YmxXpitX3nsYbugifX40pwe0/HG2hRrfqw/ynH+LrAKFaaI5RVKXA+PtqfA51fHBuWjTbwjkk5U8cuh/uHqHQUGoWR3KP6whTXZRtdrYz0je3ckLfxhz/PKhuSylleZ62FRz68bsvnZYp2uJH21BWWF5FbDchtCct5hWV/VVzvdcMPyXpa9KVLkttz67O8vyQL7WwsOXekNpXeE+smhDodyTkZF9ZdXWethUc+viT3VW8M0PiLTU8GVYGso9oyO6e8PhPp3gqUV7XMFP560gfAz2fV0xrihgl/87jjt1O4Xz7TOEB9TeuLcUcJQZS2vstfDIp5fW7K/F7KmtnW6DQl9tR3P08lCctZ/Sg/LRYfkJh5XXmFZX9VXZ5KbQ7FHD2zJ1uM5sX4z1rcKHGsoq/8W6mf/PVJCUP77WPfNwPWijMdV5vIqcz0s4vmV3rjckz2O0NBL0893NftHmvmKhmdkl18tYXKMlcNYO4fOfn/vaXMeKXqgsr4eKhneO3rKkv57X9kxy6sWeuOza3gWrIdXhGOfWTZ9j+knYv1jKw1pFtHrKjJWM3uSU/9Jl0X11cavjrriU71L020DXz38zaL3JLfwuPL46ijrob5alF/J5v8BYxmrQVlfD2V5VXusW8Pjh3ZPSAH6X2N9NNanwwmOBmrmZF6XZFUGY+Uw1oMPjZ0+014Fs8fUSctrIIblr8RaMx6aZ+56mL4aZfMxbk8nf0h7dNIekd1Zo0qHRS4P6HUVGavZw61T/ymyrzae4OudK/eEpZ85EMo43LqFx5XHCb6sh/pqUdJnNZ9mLGNZD411DGvDj38DQjpxWHpNe1+o773eHuqHtacT9/3INnvao1yzzXoC6zvvLv+Ply0sZZzVf/7o+OWWP5hXynh//aH9nbUgJs7hN3HgR9octw8gZE1pazYrM/VwQn214k45pSu8++1LwlOfMrcy92l/z1j40vaHw3WvHg3/cUVvuP/5J1dqzv7k7bvCF//1sJVHXy3TxF5BgLJMfOxlc7e5AEq2p6GgLR55pBbu2X6kUvfpqZ86NB6S3/zeOeHK1z9aqft293ePhMGvP2rF0VcBZkM/HUpXmvmM8sQ+1atLuGPGymGs//zysrU/ce7coaIHKvMzyt+550j/03/++5s7ZnnVxg/f2BDq+5G3nODzyjNhPUyHq6w9wb+ndXFrePwkNc7kqtdVZqyRXee8KV5cOFn/SZdF9tWJE3elPcl3/+pJ4aoX7NyfPrM82VdHTbevNvm47o61rmfx9kesh/pqBd2evd5uM5axGpT9GWXLq5pj9WbrwIm+LnCwoZ/+yNjNnPW6jDMNGyvHsZz1uhLLa2sMx8+cBevh+mNszKV34v4l1v8L9ZPO7AjodRUdK4a/d6YzO58oLBd11uujQ3L6TPL9z5j/tIUjIbTyPcvT7KuTySMkWw/11SKVeRZlY3XWWNZDY205RkgeinVnrL8N9ZN5HfeNRkF5Bo61qLdr30zrPtlj6pyg3NX0u/udvB6mk8hseOyNgcf3bKRPYi/Jbt8Z0OsqPtZkYbnInvpjXwH1hUPjJzJp9nuWc+irZYRk66G+WqRbS5wTY3XWWNbD2T1WOjJnINTfaGzsp+mNxmXZWAdPuH2gvwJT3c7OGtA2U0Gna2bPcuEh+ShlhOWSQjL6KkCZ0iHX6ZDqtDd5yqfSdTIvYKputDHHTAvL8eKTVQjJR4fl9NVRKSwLyfoqAJMazvrptL5vRlAGgBLDcrMhuU1hWUgGAEEZAMoLy62G5JLDspAMAIIyAJQXlqcakksKy0IyAAjKAFBeWJ5uSC44LAvJACAoA0DzYfnwo7V/qkJILiIsj9WEZAAQlAGgRYuX3/veh3eNTelMxHmH5DzD8sFDtR2vf8uuPxaSAUBQBoCWLf/p7707tHgYdlEhOaewfPcb3rrrD/9y074Dli4ACMoAMCWtfGa56JA8zbA8frj1pg/utycZAARlACg+LJcVkqcYln0mGQAEZQAoLyyXHZJbDMtCMgAIygBQXlhuV0huMiwLyQAgKANAeWG53SF5krAsJAOAoAwA5YXlrjftvL8KIflYYfnChT9cJiQDgKAMAKWphbCm+317Xzr2O6f93yqE5Maw/Jl9T/roP889tL+nb/ufW1IAICgDQCkhOV5sjrV2zvv2viy0+D3LBbv7zFrPH8TLgVgr453dZIkBgKAMAKWE5K4Qbk63tfI9y0WH5DBxuHVXGBaWAUBQpgK+d9/I0od3ji4yE8BsCckTigrLLfTVHz9xl7AMMKE31hWxlpsKBGVKdcedh5/9wx+OLtu9Z0xQBmZVSC4qLLfQV49/dmthGWBFrK2pT8bqNx0IypRq5Yp5g3193Q+bCWA2huQiwnKTfXXyr4ASloHZbSjWM7NLEJQp17y5XSNmAZhpvhXCK5oNyXmH5Sb6avPfk9wYlneGmyxZYBYZNgW0oqfJ3+sr6f70lfjYZ+xYjx5Jy3WssAEOHa7Ne/ChsdPnZz9/554j/aed2r13UW/XvvTz2Fj9DZjDh8fm5jVm/TFZDztsrH1arL46E8a6J4TLnhLCDd8O4cqfCuEf4k1Lmn6RXbz9/Tu+8eTTnrC4e1UzfTW02FcPHqrteMNbd12z6YP7T4o/ntTUnYpJP1wVXhLeFh/LwXBjWDD+eT3rhr7ayduyi9PTqKRlUDNW5cc6L9al2fX+WOtj3Rrrvuy21Ed7W+nllteMHGtnXkGZTtr6PnvHy+PF7gKHOCvWJbHrbEg/XP2h/UPx4sNZJW/MLt/VoRsjAOPSnuQUkr8bwmtjSL5lKn9j+U9/7927dpx9eP68rhc0+//s3Tu2aN7crkdDFpSPZawW7v6jt+3+4xiSD7R8p64Pw2EoXBb+Oj6mtGd5SXiVpQ3MQOncDgOxbm8IytCUZoPy7mZSd46MVe2x0t/+asiCcnTBUf9+oMD7YHl11ljoqx07VvaZ5Ik9ybdMZ6zFy+9928iucw7Hqxce69/nzw9Hek+b88gPfjjan37+uWfOH2z89+7u0bH673UfyW4aP9z6Lzfte2TKD/CjIe1reVH4s/B38cFeH7rC5dYNfbUDpY8m7Ip1sISxFhirI8a6LdsWXRtr8BjbqamPDuf8vLW8Om+sSfmMMgAcOyRvThtaMST/TR5/M8cTfDX/meTJXO8EXwAgKFOWrVkBdHRIbvbEXUWH5b5F3XtS5RqSJzgbNjC7pP4+ZBoQlGmHbVkBCMk5hOUnLJmzJ9aduYdkYRmYfVJv32EaEJQBoCIheRphOf89ycIyAAjKAFCFkDyFsFx8SBaWAUBQBoB2huQWwnJ5IVlYBgBBGQDaGZKbCMvlh2RhGQAEZQCE5HaG5BOE5faFZGEZAARlAITkKtynFJY/9ZkD4e7vHgltD8nCMgCCMgAIyVXwrhuHw+vesjNUIiQLywAIygAgJFfBI4/UqnenhGUABGUAEJIRlgEQlAFASEZYBgBBGQAhGWEZAARlAIRkhGUAEJQBEJIRlgFAUAZASBaShWUAEJQBEJKFZGEZAARlABCShWUAEJQBQEiucFiuhStMDACCMoSwIlbaMLrYVABC8izrqz8eljfGy+XWUKAiVsVan/VVEJQpTdpQXRtrMLu8wZQAJYTk5TM4JHdeX62H5Q3Z/Q3ZdYB2S/1zZdZP02uGnTqcUI8pIEc3h8c3UlMT2hPrStMCFJvLwo4YlvvTpb5aAbXxPTVrG25ZHa4K14TrxwM0QLsc3TvXxfqYaeF47FGmKItiDZkGoKywrK9WZmHcFeuSeK0/pEOvk9/5keAMoJ9Sec3uUe4r6f70lfjYjTV1Z8W6pOHn9FmPO7Ka8IZYH421xBzO2rH2abH6qrFmcV/tCvvjf68NV4X3xMi8wjqvrxa4Lbs41qGSlkHNWJUf67xYl2bX+7N+emus+xp+J+1Nvjrnfmp5ddZYO/MKynAiA7EebNige0Ws58b6ZVMDMMv7av2Q669ZpEAbLMr66e0NQfmmWF+M9XnTw3QtCfm922KsGTTW+hBq6+vv/DRKJ575Sqxec2gs7dNyN1bLakFfNZa+2oplsRYYy1hHWZX10tuPun1TVubQWJOOZY8yeUobc+nzaGtD/ayCSTr5jBO4AOirAO20Keuj67IgnWwzLQjKlGVjw8ZcMmSDDkBfBWizoawGGm4TlBGUKcXNpgBAXwWooKtNAa3w9VAAAAAgKAMAAICgDAAAAIIyAAAACMoAAAAgKAMAAICgDAAAAIIyAAAACMoAAAAgKAMAAICgDAAAAIIyAAAACMoAAABQMT2mgKnabAoAAABBGR63wxQAAAAzkEOvAQAAQFAGAACAY3PoNXlbFWsg1mCsj5kOAH0VoAJ6s166MtaWWHeZEk7EHmWK2JjbGmtdrPWmBEBfBaiAtbEWhfqbjluy/grHZY8yedqWVbIhq6tNC4C+CtBmNzZcT3uVBxr6KwjKlCId2pL2fGw0FQD6KkCFLI+1OiuYdlDuK+n+9JX42I01dWfFuqTh53Qo4B1ZXRbr92IdjrU91hJzOGvH2qfF6qvG0leNpa+WsC27ONahkpZBzViVH+u8WJdm1/uzfnprrPtiXRfrwlifjdWVcz+1vDprrJ2T/ZLPKJOHgawRJbfEOj/WW2PdZGoA9FWANlmU9dNF2c9vDvXDrlNofrXpYbqWhPzebTHWzBqrltWxpMMEd5tDY2G5G0tfNZa+WqBlsRYYy1hHWZX10tuP8+8Xh/peZnNorOPyGWXytCa7HAr1z9JtNiUA+ipABaRDsAez6xuyAkGZUmwNj38/XWo+vp8OQF8FqIItWT/dE+on8tphShCUKUtqODebBgB9FaBi7grebKQFTuYFAAAAgjIAAAAIygAAACAoAwAAgKAMAAAAgjIAAAAIygAAACAoAwAAgKAMAAAAgjIAAAAIygAAACAoAwAAgKAMAAAAgjIAAAAIygAAACAoAwAAgKAMAAAAgjL8mDWxVpkGAH0VoGLWx1puGhCUKVvakNsYa8BUAOirABULyeti9ZsKBGXK1JttzG02FQD6KkCFrAj1NxwHTQWCMmXbkNUeUwGgrwJUSHrTca1poBk9Tf5eX0n3p6/Ex26sqTsr1iUNP6dDWO4I9Tdenh7r2ljPyf5tiTmctWPt02L1VWPpq8bSV0vYll0c61BJy6BmrMqPdV6sS7Pr/Vk/vTXWS2N9Ntb+WHND/WidJeZw1o61c7JfskeZPAxkjeimWPdnDWlVQwGgrwKUbVHWT9Mh16+OdXp4/ERea4ITenECze5R3t1M6s6Rsao9VvrbXw31QwGTC7LL/2j4nVOzy3/L+b5YXp01FvqqsfRVY1GkkVi7Yh0sYawFxuqIsW6LdSDUD7EezPpp2nt8b8PvnB/rc7HuiTVsDmflWLkFZWjGtobrA9nlDtMCoK8CtNHwUf10Txaih00NgjJl22oKAPRVgAraHGvINCAo0w7bTAGAvgpQQTebAibjZF4AAAAgKAMAAICgDAAAAIIyAAAACMoAAAAgKAMAAICgDAAAAIIyAAAACMoAAAAgKAMAAICgDAAAAIIyAAAACMoAAAAgKAMAAICgDAAAAIIyAAAACMoAAAAgKAMAAICgDAAAAIIyAAAACMoAAAAwS/Q0+Xt9Jd2fvhIfu7Gm7qxYlzT8vD7WHVmZQ2NNjLVPi9VXjaWvGktfLWFbdnGsQyUtg5qxKj/WebEuza73Z/301lj3mUNjNYy1M4+gPNxCoJ6uMl8AjNVZLK/OG2uv7Td91Vj6qrH01YI9FOvkksZ6ONaIsTpmrDJZXp031mHtkyLVsgJAXwWoilVZL73dVDBVPqMMAAAAgjIAAAAIygAAACAoAwAAgKAMAAAAgjIAAAAIygAAAJCr/y/AAOW/uiH5yiNwAAAAAElFTkSuQmCC" alt="" width="520" />
 
4、缩放
public abstract void glScalef(float x,float y,float z)
缩放相当于将所有点的坐标值与缩放值相乘,对坐标轴进行的操作。gl.glScalef(2f,2f,2f) 进行缩放。意味着所有顶点乘与2
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAnoAAAEkCAYAAAC4xpwWAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAGopJREFUeNrs3W9sHOl5GPAhRVJ38Ukkw7ucGvlOanw2bLSu6MYt0FwD8Qp/KFI0J7lGkRrnSgaCAq6bQgrgfApACT0URT7keEgL+EMLS0UaA0aAk9C0X00FKIKqNkQd+ueQi2vy/tg66WSJku4qHimy76t9Ge0R5HL/zMzuzv5+wKPdJWf17j777jPPzswOswwA6AkbWXYkhkwAAFSv0ftODJkAAKhWkzce4laKcRkhD8NSAAA94ViIiRTHpAPothdDHJUGgM5tZNmVui16V2SEPIxIAR1++lwMcUkqADpq8uKu2jM/DHX1F7Ls9jNZNh9/NpRly7IDdMuPM586AXLzaqir/15dJUe26NGuQyEOp+vxk6hPnQAd1tWfhbr6M3WVHPkyBu2a2eE6AOoqGj363LEdrgOgrqLRwydPANRVNHr0mvjneSbqbh/OasfsAaCu0kOa/TLGlFRR59d2+Nn3pIY68UDyNWlQV1FX6V5dbWaLXixGkyU9gUlj9cVY/2Cbn/1DOTTWlrE0MuqqsdRVY3W5rja7Re9WiJslFkFj9fZYz2/zs79T0vPzevXXWKirxlJXjdVFjtGjVS/u8PN4bMkR6QFQV9Ho0b9m2vwdAOoqGj36uCA57xOAuopGjz4V/yTPdLp+ru7n53zyBFBX0ejR3zY/WZ4K8fW6n8frZ9L1o9IEoK7SG0akgBZMp0+Xl7b53dkQi2mZS1IFoK6i0aO/nN7l9+elCEBdpXfYdQsAoNEDAECjBwCARg8AAI0eAAAaPQAANHoAABo9AAA0egAAaPQAANDoAQCg0QMAQKMHAKDRg5acCHFUGgDUVTR6VEssRHMhZqQCQF1Fo0d1jKdidE4qANRVNHpUy5kUt6UCQF2lu0aaXG6ypMczWeJzN1b7DoY4Xnd7NsTl9MHhcyFeDvEr6XdTcjiwY91VYtVVY6mrxupuXbVFjzx9O8S1VKCO1gUA6ipd0OwWvVshbpb4uIzV22PF//v1rLYrITqbLl+qW2Zfuvxhzo/F69VfY6GuGktdNVYfNHrQjEt112fS5ZK0AKiraPSolnkpAFBX0ehR/U+hAKirdIEvYwAAaPQAANDoAQCg0QMAQKMHAIBGDwAAjR4AgEYPAACNHgAAGj0AADR6AABo9AAA0OgBAGj0AADQ6AEAoNEDAECjBwBAC0akgJwdDTETYiHERekAUFfpHlv0KKIYzYc4FWJWSgDUVTR6VMOlEGfT5ZlUnABQV9HoUSHj6ZPnnFQAqKt0T7PH6E2W9HgmS3zuxmrfwRDH627HXQmXU3w1xDdCrIT4cYgpORzYse4qseqqsdRVY3W3rtqiR97+KMSvhvjdEN+WDgB1ld42leOnB2NVa6yNFNuJuxluyaGx8Lobq3mzoabOqqvGynEsp1chTyfS5WJWO5bknJQAqKt0j0aPPM1ntW+ETWe1b4ddlRIAdRWNHtWwFOK8NACoq/QGX8agbUdSAAC9yRY92nYqXX5dKgBAo0d1bGTZ+O10/WS4PpRly7ICAL3FrlvadWwi/DORrksHAGj0qI5TcYte2qp3SjoAQKNHBWzUTtp5Jv7BxfRHF8+knwEAGj36WTweL8TFutsXHaMHABo9AAA0egAAaPQAANDoAQBo9ACgfSey5r6Nf7SF/3O7ZV8McUi6+35utDIPjmxzf/NAowdASeJKeyZr/G382RCvZbUTrv84a/ynsxstuxDinJT37dxoZR7EZu77admF1DCaB7vwJ9AAyFs8ifqZXZaZq1vZL6Tlj7ew7G+m20tZ7dztsUG4KvV9NzdamQfz2aNTe51Ly5/fZh68I82P2KIHQN5mmmi66rf23e5w2dgA+FOM/Tk3zAONHgB9JB4ntdDifU6GuNDBsnG8w1Lf93PDPCiAXbcA5GnrijbuSpurWxGf3vL7eJzVRPZoF1wj9ctO7TIuvT832p0HcU7FXcDTLY6h0YMcxDfgTIjFrO7PpAEDY+sWm7ib7oUGK/dTqWY00+Q1WnahwjmtSl1dyGEexFzELXlxF+3ygM2Dtth1S57im/VkeqPFy1ekBAZOXPlOt9i4bV1hx29mvtbkslldE6Su9t/caPTaxlOoXMkenUqlvsm7OmDzoG226JGn89mjze6xKMWDZU9LCwycuDKOp8JotPXpZKoR9cdZvVC3wp7fZdmv1F0/llX3IPyq1dWtc6PRPJhOjdty3bLx9lzdsqfqmr4qzwONHj1nwicrGFhn0sq4UaP3QoPfzWxZYW+37OYxekdTU7ikrvbl3Gg0D45taeoaNbj182DKW7D1Rm+ypMczWeJzN1b7DmYfP89RPOHl5RSbvhXij3N8w3m9+m+su0rswNbVWyH+IMQvZY1PmryTr6T101QTY+1JY031eQ4Hpa62Mjde3tLUN1I/D9TVNho9aMXXQjwf4ktSAQOr8JMX33rr0B+OjWZrRY/z0WptXVnkWPdXNsau31h/au/v104P9xu/PXFy/77hL0+MDz1csf/k2oOnb9xYP3Dk86Mxrxf75XnVjzX57NJLBc4NJ8vusNGLHfjNEh+XsXp7rPh/v549Orv52brfnUgx0+Ynea9XtcZCXS1MbFD27h1eLX6k9Yf/FjnW3r3Z6vj+PR+8lU4P8ulPjS5u/u7td9cOxCZv+sjYwtjo0Fo/Pa8tY5nzPdzoQTNigxePpziZPfpm1UJBDR9A5cUmb3Fp7blPf2rkjTt31p+IP9u/f/hevg0fVabRI29z2ce/Pr+o0QNo34Gn97xz995GaPI2Ht5+/PGh+xo9NHp0w3kpAMjPMwdHrskCnXDCZAAAjR4AABo9AAA0egAAaPQAANDoAQCg0QMA0OgBAKDRAwBAowcAgEYPAACNXk87EWK8ieWONLncTsu+GOLQAOWwlXwd2iY3Vc4XABo9SnA0xEyI5V2akO+HmA8x3UTDstOyCyHODUAOW8lX9J2Um5MDki8ANHqU5FSIuSaWO5kaj6yDZZdC3M5qW7qqnsNW8nVuh9egqvkCQKNHSWZCXN1lmaUUzdht2fkQxyqew1byFV0asHwBoNGjBHEX40LJY8bxDsvhwOYLAI0eJdnaQMRdhN9P8UqJ41Yph/IFAA2MSEFptm6JirsfX+jCuGWI34pdzBrvJu3V57JgqgK95u131w48/tjQ/Sen9tyWDVphi1554rdEpzv8P+I3Tl9rYfmZ1HCV6UpW+8LETA/kcDw9nvEezhdAQ5d/sPLFn/70wSdv3V6fkA00er3tQlY7X1sz4pal29s0IvNNLhsdS2OWaabgMXfK4XY5mE6N29bT2Szu0NB1I18ADU0fGVuYnBx+XyZoh1235TqT1U7tcbGJZU/v0EQda3LZo6kpXCr5OS53KYend2jctjuVyvld8jVlqgK9Ymx0aE0WKLrRmyzp8UyW+Ny7MdatEH8Q4pfabIi+kl6zqSbG2pPGKqJpORjieN3t2RCXU0Q/ly6nupzDl1t4HPX5qvo8LGusu0qsulrkWB+txnq4XvhAtXGi4sa6v7Ixdv3G+lN70+03f7R6eP++4TsT40MP30fr67U9cCsr66P99Ly2jGXOd6Gu2qJXvqtFD3DrrUN/ODaaFfYJ8C8L0u/X9pT+xm9PnAwF6cubBWnxrQfPxMvDz+55Ps8iMfns0ksF5vCqqQlA1TTb6MWtKDdLfFzG6kBs8vbuHV4t6v/fuzdbHd+/54O30qlIPv2p0cX63w8PP1ivLZfnY1g3D/tzLNTVvq11W+pPVtG6mpWYQ3O+C3wZAwCgouy6JXeTE8PO8wSgrqLRo4qc0BNAXaU32HULAKDRAwBAowcAgEYPAACNHgAAGj0AADR6AAAaPQAANHoAAGj0AAAYnEbvqyGOFjxG/P9/J8TfL+H5HAnxz0oaK/rHt5c39lVtol57b/2pcPG3K/Z6lTkPy3x/oa6W8j69cXP958uqP1Wtq2U8r+Xl9Sfe+cmDv6KuavSytCJ/OcRMwZMg/v//LcRvhZgtcKwTIU6G+F8hvhbilYLzdyUWvzt31/dXqRhd/sHKF9+7/uAXS2j0yny9ypyHZb6/6D2VravXbzx4+o0//+i5MupPVetq0c/r7XfXDvz0vbUDn/i5oQ/UVY3eeIh/E+K1gse5FOJsmgi/V/CLcz7E6TTWPw9xquDnFp/LhaqtpaaPjC1MTg6/X8JQZb5eZc7DMt9f9JZK19XPPDf65nvX1z9ZkfpTybr6zMGRa5/9zNhfTE4M31FXNXpnQrwa4k5J48XN1d8IMVfSeBMhFgseY7mKa6qx0aG1LgxbxutV5jws+/2Fulq41dWNkbHR7H4F64+6qq5WrtGLm1sPh7hY0ngn0lhPhlgoacxvhjhnvdM3yni9ypqHZb+/UFdLqavv/uTBLz755J5rXmp1VV3tvUYvvhDfT3EivfCxy48HUMb93TNZPgc2vlI3zpG6n8dN/38vxL/KcdLtNFb0j0L8zay2Sbnosehc3q/XToqYh9sp6v1Fbxm4uvrhhxv7Pv2p0cU8BorH+v3wysp0jPjlAdMpX9eurz+prnbHSJfGPZ9i0+YbNe7vjgfW3sny2bx7epffx25/OqfndLpB8Y3HJPxajvk7rWwUurLM+/XKSpyH2zlZ0PuL3jJwdfWvfW70f+aVvHgcmSlUjIdfyLi2Fo+l/Ovq6uA0eltdSpdTIb4U4maIpQJX5NGtrHZgaJEdfxwrHiPwL0P8jRCH0uRb9tbv2SavrNerzHlY1PvrlZSfC+Z0T6p8Xb17b/1b/+/+xmP79w/fq+qxdFVo8haX1p77q4dG3lRXu1NXR3pwXsynhBX5/8+E+HyIfx3iTwt+PnN1n2I+TB1/kSvFy/v3DX+5asUiPKf4aelyCUOV9XqVPQ+LeH9dSP/f5qfn+RSOBVRXS6mry3c2xoeHN9Yff3zofpGNXqo/lVPW8zrw9J53Pvhw4xPh6vPqavl1tZlG72C6vFlCsuJYcfP56wWOETvu8+mTRdE2d6NsjvV6CWO++9hj2UrVClJ6Tu/2zeu1kY1nQw0LWZnzsKj3V/xEeyqtdKdTbJ46IZ7e4L+E+K8hruqz1NUi3qcHnh5+YXz/ng9Kqj+VU8bziqdXiZfLdx7ERu8/VWge9l5d3WG908yXMY6nKIOxchjr+o2Hf0WiUtJz6qfXaya86a6EOPHwzVfdeRhPLXBum58/nz5Rx0+kcTdKPM9U3K1ySI+n1vVbrYvjVLWulplDc77wurrtemfoYQ/Izmb77yH/039SzhfGjv3bjx5eXvgXY6WM9x+/e6+/Xoj4GSyeNep2VtsYP5fZtlWzmNV2RcSsVHM376y6WqVaV6ay62qZ+q6G95OfD3X1+VBXfzk7tnXNMyw7QMlu1wUAnfpEqKe/sH1NHWrqs2nN2RIeqrFyGOv//I9Pnszr3FKNvPXNGzPx8tl/99R80WO9+aPVw5/7W++c65vXayN7MaudNX3u4aeqnY/Xq8I8/E726FQD24lzcT57dJCxb+iqdX1V62L9iZdVrKtlPa++q+H9WFd3WO8082WMMr7paKwcx/Kt2554vebDm+wLAzAPZ7cpRvFT5Z+F+M9Z7aDhpQy1ro9rnW/dDmQN78e6uu16R6NXwbEmxofuVq0gpefUP0ViqOmtVv08D0+kT4/Zlk+W8UjEqfTzmxlqXZ/XuirW1LKfV9/V8H6sqzusd0YygDZrd1Y7Z9UlqQDozbqq0QPa9aoUAPR2XfWtWwCAitLoAQBo9AAA0OgBAKDRAwBAowcAgEYPAACNHgCARg8AAI0eAAAaPQAANHoAAGj0AADQ6AEAaPQAANDoAQCg0aN63n537cD7Nx9MyASAukp3jUgBebr8g5UvxsvJyeH3n5zac1tGANRVuscWPXI1fWRsIRYjmQBQV9HoUTFjo0NrsgCgrtIbmt11O1nS45ks8blXdqyPVuPrul7YAPdXNsau31h/am+6/eaPVg/v3zd8Z2J86G68vb5e+wCxsrI+mteYtedkHvbZWHeVWHW1n2vdlvqTVbSuZiXm0JzvQl11jF75joRYDLFc2Ex4dumlcHFrm18dDXEphyEOhjg+m2Vn4o2z370Xn8/3UkS/ky5/r6A3U+E5LHkcgI+5c2d9Ymx06KMsNXrQrmYbvdg03CzxcVV1rCdC/FZskhosMx7iVIpjbTRm+0J8M8RvbnP/z4d4EOJiDjl7PUuNXvDClt9/WGBut+aw03w1uv/BNNZpc54CqKsdGhvN1vbuHV4tfqTaFq8ix9q7N1sd37/ng7ey7HC8/ctf2LtQ//vh4Qfr+T+G4p/XlrHM+S5wjF65YmN0bpdl4pt8McRCm2PE5uT/7nD/uRRVymGn+Wp0/9j0zYQ4ZOoC0I80euWKW4x225p2NcT5DsZ4I3u0C3Wr5dTUHCn4ec6nKCOHneZrt/tfSGMCdM3kxPDtGDJBqxyjV564i3ChBx5HbMAOpwanKJcqlMN5jR7Qbc6fh0av901vuR13B55M1xez1rdKdXL/+FguViCHrZqtu362xHEBQKNXcYtbbsdPZ/N111vVyf0XK5LDVs13aVwA0OhV3FL28S1D8Xi5Vndxbm7FO9vm/bP0GOYrksNmvJLVvsDRSb40egD0JV/GKFdssDr5IkRs8jr9o9bTWXHH0PVaDuN5A2eyzs6DF+9/wdQFoB/ZoleueGqTeL62rzex7As7NGmnmhxru/ufyHY/vUu/5nCnfM11kK9DqbG+auoCoNFjN3FL2uGs9u3RdrYynclquy/bFZuWswOUw/kOm7TYKJ40bQHQ6NGsTs/51olXByyHnebroukKQD9zjB4AgEYPAACNHgAAGj0AADR6AABo9AAA0OgBAGj0AADQ6AEAoNEDAKAY/gQaeTsSYibEYuZPiAF0bHl5/Ymf3X4w8fhjQ/cPPD3yvozQClv0yNOJECdDLKTLV6QEoH1vv7t24KfvrR3Y98Twvfeurx94488/ek5WaIUteuTpfIosNXu3Q5yWFoD2PHNw5Nrm9f37h+/92X9f+buf/Uz2FzJDs2zRoygTWW33LQA5WF3dGBkbze7LBK1odoveZEmPZ7LE526s9h0Mcbzu9myIyyk2fSvEH4eYksOBHeuuEquuFjnWR6txHbZe+EC1caLixrq/sjF2/cb6U3vT7Td/tHp4/77hOxPjQ3/5Plp6a+2ZycnhGysr66P98ry2jGXOd6Gu2nVLHmZCXK9r9L4W4vkQX5IaGFjxi1mLIZYLW+s9u/RSuLi1za+OhrhUwMr8VtEfoMOn5jPxxtnv3ou5+16Kzbp6Iue6Wsbz2q4hKnxulDxO35vK8tsqY6wKjRUK0kaMLT+OhehKiHE5NJbyObCv+6EQr+2y7Im0zJV02WrN+EaIP9nh/nEvw4vqal/MjU7nwXb33xwrNvyvDPp72TF65Cm+4eay2ifS6fQmG5cWGDixBpzbZZn4ha14CMgX0vW5Fsd4PdWc7e4/18b/p652Z250Og8a3T9u1Z1JzeXA0uiRt7lUjGZSTEgJDJxj2e7n0bxad30+xOEWx3ijwf3jrrrFrLbrTl3t7bnR6TzY7f4X0pgDyzF65Om8FMDAi1ubFtpY+V/osHnYev/Nlf5VdbVv5kZR80CjBwA5md5yO+42O5muL27TuBxJK+LpHf6/Tu4ff+Yv9PTu3GhlHkSzddfPNrj/SAvjavQAoAWLW27HE6fP113funLe3LW20zcjd7v/f2hw/0UvR0/PjVbmQVY3D3a7/5R5oNEDoBhL2ce3oMQV76VdVs5bd69ubsU72+D+nw3xnRC/nm2/e3a6QWNAb8yN3eZBFL81e6bNebQ5DzR6AJCj+bQCvrrLMnELXf23JF9Il7HJ2+0LB3/S4P6bK/hLXoqenxuN5kH8hvFMtvtWvq33/0rd9ZnUKGr0ACAncaV7KsTXGyzT6C8KTKf7N/Jcury5ze/iKUnOeRn6Ym7sNg92O93Kdvff3HV7KH1guDrICdfoAZC3uCXtcFb7lmU7f5XgTFbbzdeuuHI/62Xo+7kx32GTFhvFk4OecI0eAEXo5LQgnW6BeVX6KzE3Op0HvnGdOWEyAIBGDwAAjR4AABo9AAA0egAAaPQAAHB6FTpwTgoAQKNHNS1JAQD0NLtuAQA0egAA9BO7bsnb0RAzIRYyf34GQF2lq2zRo4hiNB/iVIhZKQFQV9HoUQ2XQpxNl2dScQJAXUWjR4WMp0+ec1IBoK7SPc0eozdZ0uOZLPG5G6t9B0Mcr7sddyVcTvHVEN8IsRLixyGm5HBgx7qrxKqrxlJXjdXdumqLHnmYCXE4Xf+jEL8a4ndDfFtqANRVettUjp8ejFWtsTZSbCfuZrglh8bC626s5s2Gmjqrrhorx7GcXoU8nUiXi1ntWJJzUgKgrtI9Gj3yNJ/VdjdMZ7Vvh12VEgB1FY0e1RD//O15aQBQV+kNvowBAKDRAwBAowcAgEYPAACNHgAAGj0AADR6AAAaPQAANHoAAGj0AADQ6AEAoNEDAECjBwCg0QMAQKMHAIBGDwAAjR4AABo9esCJEEelAUBdRaNHtcRCNBdiRioA1FU0elTHeCpG56QCQF1Fo0e1nElxWyoA1FW6a6TJ5SZLejyTJT53Y7XvYIjjdbdnQ1xOHxw+F+LlEL+SfjclhwM71l0lVl01lrpqrO7WVVv0yMNMiMMhvh3iWipQR+sCAHWVLmh2i96tEDdLfFzG6u2x4v/9elbblRC9kC7/d90y+9LlD3N+LF6v/hoLddVY6qqx+qDRg2Zc2vJpNFqSFgB1FY0e1TIvBQDqKho9qv8pFAB1lS7wZQwAAI0eAAAaPQAANHoAAGj0AADQ6AEAoNEDANDoAQCg0QMAQKMHAIBGDwAAjR4AABo9AACNHgAAGj0AADR6AABo9AAA0OgBAKDRAwDQ6AEAoNEDAKDrRppcbrKkxzNZ4nM3VvsOhjhed3s2xOUUcmiszbHuKrHqqrHUVWN1t6420+gtt9AQdqrMFYOx+ovXq//GuqOXU1eNpa4aS12lf22kACAHs6Gmzqqr5MgxegAAGj0AADR6AABo9AAA0OgBAKDRAwBAowcAUFH/X4ABAN7YmdKksFTSAAAAAElFTkSuQmCC" alt="" width="402" />
缩放与平移:
缩放和平移的顺序很重要
平移2个单位,缩放值0.5
gl.glTranslatef(2,0,0);
gl.glScalef(0.5f,0.5f,0.5f);

先进行缩放,后平移

gl.glScanlef(0.5f,0.5f,0.5f);
gl.glTranslatef(2,0,0);

5、重置坐标轴
glLoadIdentity
public abstract void glLoadIdentity();
 
6、矩阵操作
glPushMatrix
public abstract void glPushMatrix();

复制当前操作后的矩阵保存到堆栈中.

glPopMatrix

public abstract void glPopMatrix();
从堆栈中获取上一个保存的矩阵,
 
实践案例:
   绘制3个方格,A、B、C 。缩放B 50%,然后让A、C比B小50% ,然后让A逆时针旋转屏幕中心。B硬顺时针绕A旋转,最后C绕B顺时针旋转,逆时针绕其自身中心高速旋转。
public class GLES20Renderer3 implements GLSurfaceView.Renderer{
private Square square;
private float angle=0;
public GLES20Renderer3(){
square=new Square();
} @Override
public void onSurfaceCreated(GL10 gl, EGLConfig config) {
gl.glClearColor(0.0f,0.0f,0.0f,0.5f);
gl.glShadeModel(GL10.GL_SMOOTH);
gl.glClearDepthf(1.0f);
gl.glEnable(GL10.GL_DEPTH_TEST);
gl.glDepthFunc(GL10.GL_LEQUAL);
gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT,GL10.GL_NICEST);
}
@Override
public void onSurfaceChanged(GL10 gl, int width, int height) {
gl.glViewport(0,0,width,height);
gl.glMatrixMode(GL10.GL_PROJECTION);
gl.glLoadIdentity();
GLU.gluPerspective(gl,45.0f,(float)width/(float)height,0.1f,100.0f);
gl.glMatrixMode(GL10.GL_MODELVIEW);
gl.glLoadIdentity();
}
@Override
public void onDrawFrame(GL10 gl) {
gl.glClear(GL10.GL_COLOR_BUFFER_BIT|GL10.GL_DEPTH_BUFFER_BIT);
gl.glLoadIdentity();
gl.glTranslatef(0,0,-10);
//A
gl.glPushMatrix();
gl.glRotatef(angle,0,0,1);
square.draw(gl);
gl.glPopMatrix();
//B
gl.glPushMatrix();
gl.glRotatef(-angle,0,0,1);
gl.glTranslatef(2,0,0);
gl.glScalef(.5f,.5f,.5f);
square.draw(gl);
//C
gl.glPushMatrix();
gl.glRotatef(-angle,0,0,1);
gl.glTranslatef(2,0,0);
gl.glScalef(.5f,.5f,.5f);
square.draw(gl); gl.glPopMatrix();
gl.glPopMatrix();
angle++; } }
public class Square {
private float vertices[]={
-1.0f,1.0f,0.0f,
-1.0f,-1.0f,0.0f,
1.0f,-1.0f,0.0f,
1.0f,1.0f,0.0f,
};
private short[] indices={0,1,2,0,2,3};
private FloatBuffer vertexBuffer;
private ShortBuffer indexBuffer;
public Square(){
ByteBuffer vbb=ByteBuffer.allocateDirect(vertices.length*4);
vbb.order(ByteOrder.nativeOrder());
vertexBuffer=vbb.asFloatBuffer();
vertexBuffer.put(vertices);
vertexBuffer.position(0); ByteBuffer ibb=ByteBuffer.allocateDirect(indices.length*2);
ibb.order(ByteOrder.nativeOrder());
indexBuffer=ibb.asShortBuffer();
indexBuffer.put(indices);
indexBuffer.position(0); }
public void draw(GL10 gl){
gl.glFrontFace(GL10.GL_CCW);
gl.glEnable(GL10.GL_CULL_FACE);
gl.glCullFace(GL10.GL_BACK);
gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
gl.glVertexPointer(3,GL10.GL_FLOAT,0, vertexBuffer);
gl.glDrawElements(GL10.GL_TRIANGLES,indices.length,GL10.GL_UNSIGNED_SHORT,indexBuffer);
gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
gl.glDisable(GL10.GL_CULL_FACE);
} }
 

OPENGL 坐标轴转换的更多相关文章

  1. cocos2d-x 屏幕坐标系和OPenGL坐标系转换

    转自:http://home.cnblogs.com/group/topic/57609.html cocos2d坐标系(OPenGL坐标系):以左下角为原点,x向右,y向上 屏幕坐标系(androi ...

  2. Codeforces 989 P循环节01构造 ABCD连通块构造 思维对云遮月参考系坐标轴转换

    A 直接判存不存在连续的三个包含A,B,C就行 /*Huyyt*/ #include<bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a ...

  3. 3DMAX导出到Unity坐标轴转换问题

      这是我在3dmax中创建的1cm*1cm*1cm的立方体,右图为3dmax中的坐标系 当我们把这个立方体导入到unity中发现x轴意外的扭转了90度 为了解决这个问题,你需要对模型做出修正 1.选 ...

  4. obj2opengl:转换OBJ 3D模型到iPhone OpenGL ES兼容的数组中

    原文如下:obj2opengl: convert obj 3D models to arrays compatible with iPhone OpenGL ES obj2opengl在GitHub中 ...

  5. iOS——Core Animation 知识摘抄(四)

    原文地址http://www.cocoachina.com/ios/20150106/10840.html 延迟解压 一旦图片文件被加载就必须要进行解码,解码过程是一个相当复杂的任务,需要消耗非常长的 ...

  6. OSG模型简单控制

    OSG模型简单控制 转自:http://milkcu.sintune.net/blog/archives/1392673560.html 结点基本操作 添加结点 OSG中使用osg::Node和osg ...

  7. [OSG]如何用Shader得到物体的世界坐标

    来自:http://www.cnblogs.com/hesicong/archive/2008/05/27/1208312.html 最近群里面有个朋友问我关于如何得到OpenGL世界坐标的问题,当时 ...

  8. CoreAnimation6-基于定时器的动画和性能调优

    基于定时器的动画 定时帧 动画看起来是用来显示一段连续的运动过程,但实际上当在固定位置上展示像素的时候并不能做到这一点.一般来说这种显示都无法做到连续的移动,能做的仅仅是足够快地展示一系列静态图片,只 ...

  9. 【转】iOS-Core-Animation-Advanced-Techniques(六)

    原文:http://www.cocoachina.com/ios/20150106/10839.html 基于定时器的动画和性能调优 基于定时器的动画 我可以指导你,但是你必须按照我说的做. -- 骇 ...

随机推荐

  1. luogu P2824 [HEOI2016/TJOI2016]排序

    题目描述 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他.这个难题是这样子的:给出一个1到n的全排列,现在对这个全排列序列进行 ...

  2. TypeScript - 泛型

    什么是泛型 官方是这样介绍的: 软件工程中,我们不仅要创建一致的定义良好的API,同时也要考虑可重用性. 组件不仅能够支持当前的数据类型,同时也能支持未来的数据类型,这在创建大型系统时为你提供了十分灵 ...

  3. SSM非springboot配置swagger2

    前提:maven,ssm,不是springboot项目 1.在maven中添加依赖 <!-- Swagger2 Begin --> <!--springfox的核心jar包--> ...

  4. NodeJS2-5环境&调试----process(进程)

    argv(参数相关的) /* argv argv0 execArgv execPath */ const { argv, argv0, execArgv, execPath } = process; ...

  5. 初学者接金币游戏C#+unity

  6. 如何"快准狠"找到内存相关的问题

    为了迅速定位内存问题,通常会先运行几个覆盖面比较大的性能工具,比如 free.top.vmstat.pidstat 等. 具体的分析思路主要有这几步 先用 free 和 top,查看系统整体的内存使用 ...

  7. C++程序设计实验考试准备资料(2019级秋学期)

    程序设计实验考试准备资料 ——傲珂 #include<bits/stdc++.h> C++常用函数: <math.h>头文件 floor() 函数原型:double floor ...

  8. AWVS 10.5使用指南

    前言 AWVS是一款可与IBM AppScan比肩的.功能十分强大的Web漏洞扫描器.由Acunetix开发,官方站点提供了关于各种类型漏洞的解释和如何防范,具体参考:Acunetix Web Vul ...

  9. 通过 Drone Rest API 获取构建记录日志

    Drone是一款CICD工具,提供rest API,简单介绍下如何使用API 获取构建日志. 获取token 登录进入drone,点头像,在菜单里选择token 复制token即可 API 介绍 Dr ...

  10. Delphi解析修改Json文件,基于superobject.pas(ISuperObject)

    在经过一系列的波折后,还是觉得delphi读取并修改json文件来的方便: 在网络上找到一个delphi的三方库ISuperObject,添加到项目后直接引用就行: 下载地址 ISuperObject ...