Maximal Intersection
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given nn segments on a number line; each endpoint of every segment has integer coordinates. Some segments can degenerate to points. Segments can intersect with each other, be nested in each other or even coincide.

The intersection of a sequence of segments is such a maximal set of points (not necesserily having integer coordinates) that each point lies within every segment from the sequence. If the resulting set isn't empty, then it always forms some continuous segment. The length of the intersection is the length of the resulting segment or 00 in case the intersection is an empty set.

For example, the intersection of segments [1;5][1;5] and [3;10][3;10] is [3;5][3;5] (length 22), the intersection of segments [1;5][1;5] and [5;7][5;7] is [5;5][5;5] (length 00) and the intersection of segments [1;5][1;5] and [6;6][6;6] is an empty set (length 00).

Your task is to remove exactly one segment from the given sequence in such a way that the intersection of the remaining (n−1)(n−1) segments has the maximal possible length.

Input

The first line contains a single integer nn (2≤n≤3⋅1052≤n≤3⋅105) — the number of segments in the sequence.

Each of the next nn lines contains two integers lili and riri (0≤li≤ri≤1090≤li≤ri≤109) — the description of the ii-th segment.

Output

Print a single integer — the maximal possible length of the intersection of (n−1)(n−1) remaining segments after you remove exactly one segment from the sequence.

Examples
input

Copy
4
1 3
2 6
0 4
3 3
output

Copy
1
input

Copy
5
2 6
1 3
0 4
1 20
0 4
output

Copy
2
input

Copy
3
4 5
1 2
9 20
output

Copy
0
input

Copy
2
3 10
1 5
output

Copy
7
Note

In the first example you should remove the segment [3;3][3;3], the intersection will become [2;3][2;3] (length 11). Removing any other segment will result in the intersection [3;3][3;3] (length 00).

In the second example you should remove the segment [1;3][1;3] or segment [2;6][2;6], the intersection will become [2;4][2;4] (length 22) or [1;3][1;3] (length 22), respectively. Removing any other segment will result in the intersection [2;3][2;3] (length 11).

In the third example the intersection will become an empty set no matter the segment you remove.

In the fourth example you will get the intersection [3;10][3;10] (length 77) if you remove the segment [1;5][1;5] or the intersection [1;5][1;5] (length 44) if you remove the segment [3;10][3;10].

题意:已知n个区间,求删去一个区间后剩余的区间交的区域最大值

分析:求去掉某段区间后剩余的区间的相交区域,相当于求这个区间前面所有区间的相交区域和这个区间后的所有相交区域的交集

  在开始的时候枚举出所有点,关于这点前的相交区域pre[i-1],关于这点后的相交区域pos[i+1]

  然后枚举pre[i-1]与pos[i+1]相交区域的最大值

AC代码:

#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <bitset>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define ls (r<<1)
#define rs (r<<1|1)
#define debug(a) cout << #a << " " << a << endl
using namespace std;
typedef long long ll;
const ll maxn = 3e5+10;
const double eps = 1e-8;
const ll mod = 1e9 + 7;
const ll inf = 1e9;
const double pi = acos(-1.0);
struct node {
ll x, y;
};
node a[maxn], pre[maxn], pos[maxn];
int main() {
ll n, maxle1 = 0, minri1 = 1e9+10, maxle2 = 0, minri2 = 1e9+10;
scanf("%lld",&n);
pos[n+1].y = pre[0].y = 1e9+10;
for( ll i = 1; i <= n; i ++ ) {
scanf("%lld%lld",&a[i].x,&a[i].y);
maxle1 = max(maxle1,a[i].x), minri1 = min(minri1,a[i].y);
pre[i].x = maxle1, pre[i].y = minri1;
}
for( ll i = n; i >= 1; i -- ) {
maxle2 = max(maxle2,a[i].x), minri2 = min(minri2,a[i].y);
pos[i].x = maxle2, pos[i].y = minri2;
}
ll ans = 0;
for( ll i = 1; i <= n; i ++ ) {
ll le = max(pre[i-1].x,pos[i+1].x), ri = min(pre[i-1].y,pos[i+1].y);
ans = max(ans,ri-le);
}
printf("%lld\n",ans);
return 0;
}

  

CF1029C Maximal Intersection 暴力枚举的更多相关文章

  1. F - Maximal Intersection --------暴力求解题

    You are given n segments on a number line; each endpoint of every segment has integer coordinates. S ...

  2. CF1029C Maximal Intersection

    https://www.luogu.org/problem/show?pid=CF1029C #include<bits/stdc++.h> using namespace std ; # ...

  3. 区间Dp 暴力枚举+动态规划 Hdu1081

    F - 最大子矩形 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Submit Status Des ...

  4. Codeforces Round #506 (Div. 3) C. Maximal Intersection

    C. Maximal Intersection time limit per test 3 seconds memory limit per test 256 megabytes input stan ...

  5. CodeForces 742B Arpa’s obvious problem and Mehrdad’s terrible solution (暴力枚举)

    题意:求定 n 个数,求有多少对数满足,ai^bi = x. 析:暴力枚举就行,n的复杂度. 代码如下: #pragma comment(linker, "/STACK:1024000000 ...

  6. 2014牡丹江网络赛ZOJPretty Poem(暴力枚举)

    /* 将给定的一个字符串分解成ABABA 或者 ABABCAB的形式! 思路:暴力枚举A, B, C串! */ 1 #include<iostream> #include<cstri ...

  7. HNU 12886 Cracking the Safe(暴力枚举)

    题目链接:http://acm.hnu.cn/online/?action=problem&type=show&id=12886&courseid=274 解题报告:输入4个数 ...

  8. 51nod 1116 K进制下的大数 (暴力枚举)

    题目链接 题意:中文题. 题解:暴力枚举. #include <iostream> #include <cstring> using namespace std; ; ; ch ...

  9. Codeforces Round #349 (Div. 1) B. World Tour 最短路+暴力枚举

    题目链接: http://www.codeforces.com/contest/666/problem/B 题意: 给你n个城市,m条单向边,求通过最短路径访问四个不同的点能获得的最大距离,答案输出一 ...

随机推荐

  1. DDMS 视图 Emulator Control 为灰色

    Emulator Control 模拟发送短信时,发现所有选项均为灰色,如图所示: 解决方法: 确认以下四种情形或方法 已测试 Genymotion 模拟器和真机均不行,而Eclipse自带模拟器可以 ...

  2. How to check all timestamps of a file

    A friend of mine she asked me how to check all timestamps of a file on an NTFS volume. She did not h ...

  3. 免安装版tomcat安装成服务

    安装方式(前提已经安装好了jdk,并配置了环境量): (1) 下载非exe的tomcat zip包: (2) 解压缩,如:D:\tomcat: (3) 进入D:\tomcat\bin,修改servic ...

  4. vue前后分离项目部署(不同端口号,nginx反向代理解决跨域问题)

    #user nobody; worker_processes 1; #error_log logs/error.log; #error_log logs/error.log notice; #erro ...

  5. umask 默认权限控制和特殊权限

    权限简单介绍: 在Linux中,创建目录或者文件之后总会有默认的权限.共9个,分为三组.分别代表u.g.o(属主.属组.其他用户).r.w.x 也代表各自的权限. r:读   在文件中的权限代表次文件 ...

  6. win10 我的电脑下面的六个文件夹的隐藏

      第一步   第二步     第三步 修改注册表,要隐藏那个文件夹,ThisPCPolicy 改为 "Hide" 修改我的文档的注册表值,使我的文档文件夹隐藏     <w ...

  7. (十九)c#Winform自定义控件-停靠窗体

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...

  8. 10G的变态SQL文件,如何快速打开编辑?

    工作中,偶尔需要编辑一些大文件,比如 log 文件,后者一些变态的 SQL,此时用平常的编辑器就会显得力不从心,要么直接打不开,要么打开后卡得要死. 本文就给大家推荐几款可以操作大文件的编辑器,准备好 ...

  9. 十款强大的IDEA插件-Java开发者的利器

    xl_echo编辑整理,欢迎转载,转载请声明文章来源.欢迎添加echo微信(微信号:t2421499075)交流学习. 百战不败,依不自称常胜,百败不颓,依能奋力前行.--这才是真正的堪称强大!! 插 ...

  10. spring data jpa 的使用

    使用spring data jpa 开发时,发现国内对spring boot jpa全面介绍的文章比较少案例也比较零碎,因此写文章总结一下. spring data jpa介绍 首先了解JPA是什么? ...