Maximal Intersection
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given nn segments on a number line; each endpoint of every segment has integer coordinates. Some segments can degenerate to points. Segments can intersect with each other, be nested in each other or even coincide.

The intersection of a sequence of segments is such a maximal set of points (not necesserily having integer coordinates) that each point lies within every segment from the sequence. If the resulting set isn't empty, then it always forms some continuous segment. The length of the intersection is the length of the resulting segment or 00 in case the intersection is an empty set.

For example, the intersection of segments [1;5][1;5] and [3;10][3;10] is [3;5][3;5] (length 22), the intersection of segments [1;5][1;5] and [5;7][5;7] is [5;5][5;5] (length 00) and the intersection of segments [1;5][1;5] and [6;6][6;6] is an empty set (length 00).

Your task is to remove exactly one segment from the given sequence in such a way that the intersection of the remaining (n−1)(n−1) segments has the maximal possible length.

Input

The first line contains a single integer nn (2≤n≤3⋅1052≤n≤3⋅105) — the number of segments in the sequence.

Each of the next nn lines contains two integers lili and riri (0≤li≤ri≤1090≤li≤ri≤109) — the description of the ii-th segment.

Output

Print a single integer — the maximal possible length of the intersection of (n−1)(n−1) remaining segments after you remove exactly one segment from the sequence.

Examples
input

Copy
4
1 3
2 6
0 4
3 3
output

Copy
1
input

Copy
5
2 6
1 3
0 4
1 20
0 4
output

Copy
2
input

Copy
3
4 5
1 2
9 20
output

Copy
0
input

Copy
2
3 10
1 5
output

Copy
7
Note

In the first example you should remove the segment [3;3][3;3], the intersection will become [2;3][2;3] (length 11). Removing any other segment will result in the intersection [3;3][3;3] (length 00).

In the second example you should remove the segment [1;3][1;3] or segment [2;6][2;6], the intersection will become [2;4][2;4] (length 22) or [1;3][1;3] (length 22), respectively. Removing any other segment will result in the intersection [2;3][2;3] (length 11).

In the third example the intersection will become an empty set no matter the segment you remove.

In the fourth example you will get the intersection [3;10][3;10] (length 77) if you remove the segment [1;5][1;5] or the intersection [1;5][1;5] (length 44) if you remove the segment [3;10][3;10].

题意:已知n个区间,求删去一个区间后剩余的区间交的区域最大值

分析:求去掉某段区间后剩余的区间的相交区域,相当于求这个区间前面所有区间的相交区域和这个区间后的所有相交区域的交集

  在开始的时候枚举出所有点,关于这点前的相交区域pre[i-1],关于这点后的相交区域pos[i+1]

  然后枚举pre[i-1]与pos[i+1]相交区域的最大值

AC代码:

#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <bitset>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define ls (r<<1)
#define rs (r<<1|1)
#define debug(a) cout << #a << " " << a << endl
using namespace std;
typedef long long ll;
const ll maxn = 3e5+10;
const double eps = 1e-8;
const ll mod = 1e9 + 7;
const ll inf = 1e9;
const double pi = acos(-1.0);
struct node {
ll x, y;
};
node a[maxn], pre[maxn], pos[maxn];
int main() {
ll n, maxle1 = 0, minri1 = 1e9+10, maxle2 = 0, minri2 = 1e9+10;
scanf("%lld",&n);
pos[n+1].y = pre[0].y = 1e9+10;
for( ll i = 1; i <= n; i ++ ) {
scanf("%lld%lld",&a[i].x,&a[i].y);
maxle1 = max(maxle1,a[i].x), minri1 = min(minri1,a[i].y);
pre[i].x = maxle1, pre[i].y = minri1;
}
for( ll i = n; i >= 1; i -- ) {
maxle2 = max(maxle2,a[i].x), minri2 = min(minri2,a[i].y);
pos[i].x = maxle2, pos[i].y = minri2;
}
ll ans = 0;
for( ll i = 1; i <= n; i ++ ) {
ll le = max(pre[i-1].x,pos[i+1].x), ri = min(pre[i-1].y,pos[i+1].y);
ans = max(ans,ri-le);
}
printf("%lld\n",ans);
return 0;
}

  

CF1029C Maximal Intersection 暴力枚举的更多相关文章

  1. F - Maximal Intersection --------暴力求解题

    You are given n segments on a number line; each endpoint of every segment has integer coordinates. S ...

  2. CF1029C Maximal Intersection

    https://www.luogu.org/problem/show?pid=CF1029C #include<bits/stdc++.h> using namespace std ; # ...

  3. 区间Dp 暴力枚举+动态规划 Hdu1081

    F - 最大子矩形 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Submit Status Des ...

  4. Codeforces Round #506 (Div. 3) C. Maximal Intersection

    C. Maximal Intersection time limit per test 3 seconds memory limit per test 256 megabytes input stan ...

  5. CodeForces 742B Arpa’s obvious problem and Mehrdad’s terrible solution (暴力枚举)

    题意:求定 n 个数,求有多少对数满足,ai^bi = x. 析:暴力枚举就行,n的复杂度. 代码如下: #pragma comment(linker, "/STACK:1024000000 ...

  6. 2014牡丹江网络赛ZOJPretty Poem(暴力枚举)

    /* 将给定的一个字符串分解成ABABA 或者 ABABCAB的形式! 思路:暴力枚举A, B, C串! */ 1 #include<iostream> #include<cstri ...

  7. HNU 12886 Cracking the Safe(暴力枚举)

    题目链接:http://acm.hnu.cn/online/?action=problem&type=show&id=12886&courseid=274 解题报告:输入4个数 ...

  8. 51nod 1116 K进制下的大数 (暴力枚举)

    题目链接 题意:中文题. 题解:暴力枚举. #include <iostream> #include <cstring> using namespace std; ; ; ch ...

  9. Codeforces Round #349 (Div. 1) B. World Tour 最短路+暴力枚举

    题目链接: http://www.codeforces.com/contest/666/problem/B 题意: 给你n个城市,m条单向边,求通过最短路径访问四个不同的点能获得的最大距离,答案输出一 ...

随机推荐

  1. 在 dotnet core (C#)下的颜色渐变

    直接使用等比例抽样算法,连同透明度一起计算. public IList<Color> ShadeColors(Color c1, Color c2, int resultCount) { ...

  2. 爬虫获取搜狐汽车的配置信息 和swf动态图表的销量数据-------详细教学

    前情提要:需要爬取搜狐汽车的所有配置信息,具体配置对应的参数. 以及在动态图表上的历史销量. 比如: 一汽奥迪旗下Q5L 的<40 TFSI 荣享进取型 国VI >的历史销量和该配置的参数 ...

  3. 洛谷P1510 题解

    前言: 其实这道题挺水的,但我居然把ta想成了 贪心 啪啪打脸 好了,废话不多说. 思路: step 1:先翻译以下题意,其实就是求出最多消耗多少体力能把东海填满,如果不能填满,就输出"Im ...

  4. Idea搭建Spring+SpringMvc+Mybatis框架集成项目

    1.新建maven项目 2.创建多模块 每个模块配置如父模块一样,除视图层 (视图层配置) 最后 common-通过模块,不依赖任何模块,有各种项目所需要用到的工具类 model- POJO.VO.D ...

  5. 3月1日 大型网站系统与Java中间件实践 读后感

    第二章:大型网站以及架构演进过程 db和应用服务器在一台机器上 数据库与应用分离 服务器走向集群,负载均衡,session问题 读写分离:数据复制,数据源的选择,搜索引擎其实就是一个读库,缓存(数据缓 ...

  6. Linux(CentOS7)下RabbitMQ下载安装教程

    原文链接:http://www.studyshare.cn/software/details/1172/0 一.下载安装步骤 下载erlang 1.wget 下载地址 2.rpm -Uvh erlan ...

  7. ElasticSearch 安装与使用

    目录 Elastic Search Docker中安装ElasticSearch Elastic Search API得使用 创建Index: 修改Index Mapping: 修改Index Set ...

  8. Java相关|Code Review Checklist(Server)

    安全 所有入参均经过校验,包括验证参数数据类型.范围.长度,尽可能采用白名单形式验证所有的输入.对于非法请求,记录WARN log.参考Input Validation Cheat Sheet:前后端 ...

  9. github的详细使用,非常简单!

    https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000/

  10. Java并发之内存模型(JMM)浅析

    背景 学习Java并发编程,JMM是绕不过的槛.在Java规范里面指出了JMM是一个比较开拓性的尝试,是一种试图定义一个一致的.跨平台的内存模型.JMM的最初目的,就是为了能够支多线程程序设计的,每个 ...