题目链接:http://codeforces.com/problemset/problem/264/B

题意:给出一个严格递增的一串数字,求最长的相邻两个数的gcd不为1的序列长度

其实这题可以考虑一下素因数,将每一个数都已是分解为几个不重复的素数,设dp[i]为含有因数i的最长序列有多长

然后遍历一下这串数字,每次更新dp[a[i]]=max(dp[j]+1,dp[a[i]]),j表示a[i]的素因数,再将每个素因数更新为

最大值。

for(int i = 1 ; i <= n ; i++) {

int gg = a[i] , flag = 0 , sum = 0;

MAX = 0;

for(int j = 0 ; j < cnt ; j++) {

flag = 0;

while(gg % num[j] == 0) {

flag = 1;

gg /= num[j];

}

if(flag == 1) {

b[sum++] = num[j];

}

if(gg == 1)//不加这句会超时,因为最后当gg为1的时候就没有1以外的因数了再找下去就是浪费时间

break;

}

for(int j = 0 ; j < sum ; j++) {

MAX = max(dp[b[j]] + 1 , MAX);

}

for(int j = 0 ; j < sum ; j++) {

dp[b[j]] = MAX;

}

}

#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdio>
using namespace std;
const int M = 1e5 + 10;
int a[M] , b[M] , dp[M] , prime[M] , num[M] , cnt = 0;
void IsPrime() {
prime[0] = prime[1] = 0 , prime[2] = 1;
for(int i = 3 ; i < M ; i++) {
prime[i] = i % 2 == 0 ? 0 : 1;
}
int t = (int)sqrt(M * 1.0);
for(int i = 3 ; i <= t ; i++) {
if(prime[i]) {
for(int j = i * i ; j < M ; j += 2 * i) {
prime[j] = 0;
}
}
}
for(int i = 2 ; i < M ; i++) {
if(prime[i]) {
num[cnt++] = i;
}
}
}
int main() {
int n;
IsPrime();
scanf("%d" , &n);
int count = 0 , MAX = 0;
for(int i = 1 ; i <= n ; i++) {
scanf("%d" , &a[i]);
}
memset(dp , 0 , sizeof(dp));
for(int i = 1 ; i <= n ; i++) {
int gg = a[i] , flag = 0 , sum = 0;
MAX = 0;
for(int j = 0 ; j < cnt ; j++) {
flag = 0;
while(gg % num[j] == 0) {
flag = 1;
gg /= num[j];
}
if(flag == 1) {
b[sum++] = num[j];
}
if(gg == 1)
break;
}
for(int j = 0 ; j < sum ; j++) {
MAX = max(dp[b[j]] + 1 , MAX);
}
for(int j = 0 ; j < sum ; j++) {
dp[b[j]] = MAX;
}
}
int MM = 1;
for(int i = 0 ; i < cnt ; i++) {
MM = max(dp[num[i]] , MM);
}
printf("%d\n" , MM);
return 0;
}

codeforces 264 B. Good Sequences(dp+数学的一点思想)的更多相关文章

  1. Codeforces 1144G Two Merged Sequences dp

    Two Merged Sequences 感觉是个垃圾题啊, 为什么过的人这么少.. dp[ i ][ 0 ]表示处理完前 i 个, 第 i 个是递增序列序列里的元素,递减序列的最大值. dp[ i ...

  2. Codeforces 264 B. Good Sequences

    B. Good Sequences time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  3. CodeForces - 441E:Valera and Number (DP&数学期望&二进制)

    Valera is a coder. Recently he wrote a funny program. The pseudo code for this program is given belo ...

  4. CodeForces 447C DZY Loves Sequences DP

    题目:click here 题意:求给定序列更改其中一个元素后的最长连续上升子序列的长度 分析:最长的连续子序列有2种,一种是严格上升(没有更改元素)的长度加1,一种是两段严格上升的加起来. #inc ...

  5. CodeForces 446A DZY Loves Sequences (DP+暴力)

    题意:给定一个序列,让你找出一个最长的序列,使得最多改其中的一个数,使其变成严格上升序列. 析:f[i] 表示以 i 结尾的最长上升长度,g[i] 表示以 i 为开始的最长上升长度,这两个很容易就求得 ...

  6. CodeForces 450B Jzzhu and Sequences (矩阵优化)

    CodeForces 450B Jzzhu and Sequences (矩阵优化) Description Jzzhu has invented a kind of sequences, they ...

  7. [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆)

    [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆) 题面 一棵二叉树的所有点的点权都是给定的集合中的一个数. 让你求出1到m中所有权 ...

  8. # E. Mahmoud and Ehab and the xor-MST dp/数学+找规律+xor

    E. Mahmoud and Ehab and the xor-MST dp/数学/找规律 题意 给出一个完全图的阶数n(1e18),点由0---n-1编号,边的权则为编号间的异或,问最小生成树是多少 ...

  9. 有关动态规划(主要是数位DP)的一点讨论

    动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法.20世纪50年代初美国数学家在研究多阶段决策过程的优化问题时, ...

随机推荐

  1. 7z 命令行方式生成自解压exe

    一.下载 7z是一个免费的工具,除了通过命令行的方式提供各种文件.压缩包相关的操作外,还提供了一种方式可以打出自解压的exe程序.该程序从运行到结束经历了三个流程: (1) 解压文件到用户临时目录: ...

  2. 【故障公告】发布 .NET Core 版博客站点引起大量 500 错误

    非常抱歉,今天上午的博客站点故障给大家带来了很大的麻烦,请大家谅解.这次故障是我们发布 .NET Core 版博客站点引起的,虽然我们进行了充分的准备,但还是低估了高并发下的复杂问题. 以下是故障背景 ...

  3. python_0基础学习_day02

    第二节 一,while while也称为无限循环.死循环 while 条件: 缩进 循环体 应用领域:音乐播放:单曲循环,列表循环,随机播放(也是有规律的) 登陆界面:…… 数学计算:1~100的和, ...

  4. sed流编辑器

    一.前言 (一).sed 工作流程 sed 是一种在线的.非交互式的流编辑器,它一次处理一行内容.处理时,把当做前处理的行存储在临时缓存区中,成为“模式空间”(pattern space),接着用se ...

  5. 自己动手写Spring框架--IOC、MVC

    对于一名Java开发人员,我相信没有人不知道 Spring 框架,而且也能够轻松就说出 Spring 的特性-- IOC.MVC.AOP.ORM(batis). 下面我想简单介绍一下我写的轻量级的 S ...

  6. virtualbox安装ubuntu16 LTS及其配置

    一.下载安装VirtualBox 1. 从官网下载VirtualBox,目前版本:VirtualBox 6.0.6 for Windows hosts x86/amd64 2. 下载好之后安装Virt ...

  7. 一文读懂JS中的原型和原型链(图解)

    讲原型的时候,我们应该先要记住以下几个要点,这几个要点是理解原型的关键: 1.所有的引用类型(数组.函数.对象)可以自由扩展属性(除null以外). 2.所有的引用类型都有一个’_ _ proto_ ...

  8. egg-sequelize-ts 插件

    egg-sequelize-ts plugin 目的 (Purpose) 能让使用 typescript 编写的 egg.js 项目中能够使用 sequelize方法,并同时得到egg.js所赋予的功 ...

  9. cmd命令行带参启动程序

    cmd命令行带参启动程序 有一些程序不支持被直接启动,编写代码时,我们可以通过Process类来启动某个进程(某个软件),在不用代码调从而启动某个软件时,windows系统下,通常我们会用到cmd命令 ...

  10. 《机器学习技法》---线性SVM

    (本文内容和图片来自林轩田老师<机器学习技法>) 1. 线性SVM的推导 1.1 形象理解为什么要使用间隔最大化 容忍更多的测量误差,更加的robust.间隔越大,噪声容忍度越大: 1.2 ...