计蒜客 The Preliminary Contest for ICPC Asia Nanjing 2019
F Greedy Sequence
You're given a permutation aa of length nn (1 \le n \le 10^51≤n≤105).
For each i \in [1,n]i∈[1,n], construct a sequence s_isi by the following rules:
- s_i[1]=isi[1]=i;
- The length of s_isi is nn, and for each j \in [2, n]j∈[2,n], s_i[j] \le s_i[j-1]si[j]≤si[j−1];
- First, we must choose all the possible elements of s_isi from permutation aa. If the index of s_i[j]si[j] in permutation aa is pos[j]pos[j], for each j \ge 2j≥2, |pos[j]-pos[j-1]|\le k∣pos[j]−pos[j−1]∣≤k (1 \le k \le 10^51≤k≤105). And for each s_isi, every element of s_isi must occur in aa at most once.
- After we choose all possible elements for s_isi, if the length of s_isi is smaller than nn, the value of every undetermined element of s_isi is 00;
- For each s_isi, we must make its weight high enough.
Consider two sequences C = [c_1, c_2, ... c_n]C=[c1,c2,...cn] and D=[d_1, d_2, ..., d_n]D=[d1,d2,...,dn], we say the weight of CC is higher thanthat of DD if and only if there exists an integer kk such that 1 \le k \le n1≤k≤n, c_i=d_ici=di for all 1 \le i < k1≤i<k, and c_k > d_kck>dk.
If for each i \in [1,n]i∈[1,n], c_i=d_ici=di, the weight of CC is equal to the weight of DD.
For each i \in [1,n]i∈[1,n], print the number of non-zero elements of s_isi separated by a space.
It's guaranteed that there is only one possible answer.
Input
There are multiple test cases.
The first line contains one integer T(1 \le T \le 20)T(1≤T≤20), denoting the number of test cases.
Each test case contains two lines, the first line contains two integers nn and kk (1 \le n,k \le 10^51≤n,k≤105), the second line contains nn distinct integers a_1, a_2, ..., a_na1,a2,...,an (1 \le a_i \le n1≤ai≤n) separated by a space, which is the permutation aa.
Output
For each test case, print one line consists of nn integers |s_1|, |s_2|, ..., |s_n|∣s1∣,∣s2∣,...,∣sn∣ separated by a space.
|s_i|∣si∣ is the number of non-zero elements of sequence s_isi.
There is no space at the end of the line.
题解 :
输入 T组样例(T<=20)给定 n k, 序列a是 1-n 乱序排列的一组数。
求 有n个 s序列 si [0]= i . 从 a中选择数字 , s序列是降序排列 ,满足最大字典序,且s中相邻的两个数 在a中的下标 绝对值的差小于k ∣pos[j]−pos[j−1]∣≤k (1≤ k ≤10^5)
输出n个s序列中非0的个数。
从 s1 ={1,0,0,,,0} 答案为 ans=1.
s2 在s1 的基础上增加了 2 判断 新加入的2是否满足k ,即ans[2] =ans[1]+1. 从i 到 1 满足的则加上 ,否则不加。
ans[i]+=ans[j]; 每个s序列的ans[i] 需要从 1计算到 i 由 j 控制。
#include <cstdio>
#include <algorithm>
#include <iostream>
#include <map>
#include <string>
#include <cstring>
#include <queue>
#include <stack>
#include <cmath>
#define int long long
#define Mod 1000000007
#define pi (acos(-1))
#define inf 0x3f3f3f3f3f
#define Maxn 100005
using namespace std; int a[Maxn];
int pos[Maxn];
int ans[Maxn];
signed main(){
int t;
scanf("%lld",&t);
while(t--){
int n,k;
scanf("%lld%lld",&n,&k);
for(int i = ; i <= n ; i ++ )
{
scanf("%lld",&a[i]);
pos[a[i]]=i;
}
// for(int i = 0 ; i < n ; i ++ )
// printf("%lld ",pos[i]);
// ans[1]=1;
// if(pos[2]-pos[1]<=k&&pos[2]-pos[1]>=-k)
// ans[2]+=a[1];
// printf("a2=%lld\n",a[2]);
for(int i = ; i <= n ; i ++ )
{
ans[i]=;
for(int j = i- ; j >= ; j -- )
{
if(pos[i]-pos[j]>=-k&&pos[i]-pos[j]<=k)
{
ans[i]+=ans[j];
// printf("%lld%lld%lld\n",i,i,i);
break;
}
}
}
for(int i = ; i < n ; i ++ )
printf("%lld ",ans[i]);
printf("%lld\n",ans[n]);
}
return ;
}
计蒜客 The Preliminary Contest for ICPC Asia Nanjing 2019的更多相关文章
- [The Preliminary Contest for ICPC Asia Nanjing 2019] A-The beautiful values of the palace(二维偏序+思维)
>传送门< 前言 这题比赛的时候觉得能做,硬是怼了一个半小时,最后还是放弃了.开始想到用二维前缀和,结果$n\leq 10^{6}$时间和空间上都爆了,没有办法.赛后看题解用树状数组,一看 ...
- The Preliminary Contest for ICPC Asia Nanjing 2019/2019南京网络赛——题解
(施工中……已更新DF) 比赛传送门:https://www.jisuanke.com/contest/3004 D. Robots(期望dp) 题意 给一个DAG,保证入度为$0$的点只有$1$,出 ...
- The Preliminary Contest for ICPC Asia Nanjing 2019 B. super_log (广义欧拉降幂)
In Complexity theory, some functions are nearly O(1)O(1), but it is greater then O(1)O(1). For examp ...
- The Preliminary Contest for ICPC Asia Nanjing 2019
传送门 A. The beautiful values of the palace 题意: 给出一个\(n*n\)的矩阵,并满足\(n\)为奇数,矩阵中的数从右上角开始往下,类似于蛇形填数那样来填充. ...
- The Preliminary Contest for ICPC Asia Nanjing 2019 H. Holy Grail
题目链接:https://nanti.jisuanke.com/t/41305 题目说的很明白...只需要反向跑spfa然后输入-dis,然后添-dis的一条边就好了... #include < ...
- 树状数组+二维前缀和(A.The beautiful values of the palace)--The Preliminary Contest for ICPC Asia Nanjing 2019
题意: 给你螺旋型的矩阵,告诉你那几个点有值,问你某一个矩阵区间的和是多少. 思路: 以后记住:二维前缀和sort+树状数组就行了!!!. #define IOS ios_base::sync_wit ...
- B.super_log(The Preliminary Contest for ICPC Asia Nanjing 2019)
同:https://www.cnblogs.com/--HPY-7m/p/11444923.html #define IOS ios_base::sync_with_stdio(0); cin.tie ...
- H.Holy Grail ( floyd )(The Preliminary Contest for ICPC Asia Nanjing 2019)
题意: 给出一个有向图,再给出6条原来不存在的路径,让你在这6条路径上添加一个最小的数,使图不存在负环. 思路: 直接6遍 floyd 输出就行了. #include <bits/stdc++. ...
- F. Greedy Sequence(主席树区间k的后继)(The Preliminary Contest for ICPC Asia Nanjing 2019)
题意: 查找区间k的后继. 思路: 直接主席树. #define IOS ios_base::sync_with_stdio(0); cin.tie(0); #include <cstdio&g ...
随机推荐
- 你不知道的Canvas(二)
你不知道的Canvas(二) 一.色彩Colors 到目前为止,我们只看到过绘制内容的方法.如果我们想要给图形上色,有两个重要的属性可以做到:fillStyle 和 strokeStyle. fill ...
- javadoc的使用
在进行项目开发过程中,项目接口文档是很重要的一块内容,在java项目中我们可以用swagger,asciidoc,javadoc等方式来生产文档,而其中最基本的文档生成方式就是javadoc,它一般用 ...
- C# 计时周期数(Ticks)在不同数据库上的实现
要在数据库中实现 DateTime.Ticks,先来看看 Ticks 在微软官方文档上的定义: 注解 一个计时周期表示一百纳秒,即一千万分之一秒. 毫秒内有 , 个计时周期,即 秒内有 , 万个计时周 ...
- 20190906_matplotlib_学习与快速实现
20190906 Matplotlib 学习总结 第一部分: 参考连接: Introduction to Matplotlib and basic line https://www.jianshu.c ...
- Windows 10 与 kali 双系统安装
一.教程中用到的工具如下: 1.kali 2019镜像, 2.U盘 现在最低也有8G吧 3.软碟通 ,U盘刻录工具 4.win 10系统要留出一个空的硬盘,哪个盘的空间比较大可以压缩出大概100G的空 ...
- Java迭代Map方法
Map map=new HashMap(); map.put("1", "one"); map.put("2","two" ...
- Spring Cloud Gateway使用简介
Spring Cloud Gateway是类似Nginx的网关路由代理,有替代原来Spring cloud zuul之意: Spring 5 推出了自己的Spring Cloud Gateway,支持 ...
- Cpython和Jython的对比介绍
CPython 当我们从Python官方网站下载并安装好Python 3.x后,我们就直接获得了一个官方版本的解释器:CPython.这个解释器是用C语言开发的,所以叫CPython.在命令行下运行p ...
- mariadb数据类型
MariaDB 数据类型: MariaDB数据类型可以分为 数字,日期和时间以及字符串值. 使用数据类型的原则:够用就行,尽量使用范围小的,而不用大的 常用的数据类型: a. 整数:int, bit ...
- PHPExcel数据导入(含图片)
PHPExcel是一个PHP类库,用来帮助我们简单.高效实现从Excel读取Excel的数据和导出数据到Excel. 首先下载压缩包: https://codeload.github.com/PHPO ...