[JOYOI1510] 专家复仇 - Floyd
题目限制
时间限制 | 内存限制 | 评测方式 | 题目来源 |
1000ms | 131072KiB | 标准比较器 | Local |
题目背景
外星人完成对S国的考察后,准备返回,可他们的飞碟已经没燃料了……
S国的专家暗自窃喜……复仇的机会终于来了——他们打算敲诈外星人一大笔钱……
题目描述
S国有n个燃料基地,保存有外星人所需的全部燃料,编号分别为1,2,3,…,n,对于每个燃料基地i,都有【((i-1) mod 10)+1】吨燃料。其中,编号<=5的燃料基地两两之间都有可双向通行的路;对于其余每个燃料基地i,与(i-1),(i-3)之间,也有可双向通行的路。对于任意两燃料基地i,j,若之间有路将他们【直接】连接,则通过这条路的运费为【(i*j)mod10+(i+j)mod6+1)】(单位:元/吨)。
S国的专家要按每吨一元的价格把燃料卖给外星人,并且要它们支付运费。那么,外星人应选择把所有燃料运往那个燃料基地,才能尽可能的让S国专家失望?它们所要支付的最小费用是多少?
注:数据保证解的唯一性。
输入格式
仅有一个整数n。
输出格式
第一行:外星人所要支付的最小费用;
第二行:可供外星人选择的燃料基地的编号。
提示
样例解释:
第1-5个基地两两间有路,第6个基地与第3,5个基地间有路。当把全部燃料运到第五个基地时,总费用最少,为107.
数据范围:
对于 30%的数据,有5<N<50;
对于 60%的数据,有5<N<500;
对于100%的数据,有5<=N<700;
输出数据范围请大家自行判断。
样例数据
输入样例 #1 | 输出样例 #1 |
---|---|
6 |
107 5 |
签到题;
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int n;
int dis[][];
int f[], mx=1e9;
int ans; int main()
{
scanf("%d", &n);
memset(dis, 0x3f, sizeof dis);
for (register int i = ; i <= n; i ++) dis[i][i] = ;
for (register int i = ; i <= ; i ++)
{
for (register int j = ;j <= ; j ++)
{
if (i == j) continue;
dis[i][j] = dis[j][i] = (i * j) % + (i + j) % + ;
}
}
for (register int i = ; i <= n; i ++)
{
int j = i - ;
dis[i][j] = dis[j][i] = (i * j) % + (i + j) % + ;
j = i - ;
dis[i][j] = dis[j][i] = (i * j) % + (i + j) % + ;
}
for (register int i = ; i <= n; i ++) ans += (i - ) % + ;
for (register int k = ; k <= n; k ++)
for (register int i = ; i <= n; i ++)
for (register int j = ; j <= n ; j ++)
if (i != j and j != k and k != j)
dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);
for (register int i = ; i <= n; i ++)
{
for (register int j = ; j <= n; j ++)
{
if (i == j) continue;
f[i] += dis[i][j] * ((j - ) % + );
}
mx = min(mx, f[i]);
}
cout << ans + mx << endl;
for (register int i = ; i <= n; i ++)
{
if (f[i] == mx) printf("%d ", i);
}
return ;
}
[JOYOI1510] 专家复仇 - Floyd的更多相关文章
- 前端构建大法 Gulp 系列 (三):gulp的4个API 让你成为gulp专家
系列目录 前端构建大法 Gulp 系列 (一):为什么需要前端构建 前端构建大法 Gulp 系列 (二):为什么选择gulp 前端构建大法 Gulp 系列 (三):gulp的4个API 让你成为gul ...
- floyd算法学习笔记
算法思路 路径矩阵 通过一个图的权值矩阵求出它的每两点间的最短路径矩阵.从图的带权邻接矩阵A=[a(i,j)] n×n开始,递归地进行n次更新,即由矩阵D(0)=A,按一个公式,构造出矩阵D(1):又 ...
- 最短路(Floyd)
关于最短的先记下了 Floyd算法: 1.比较精简准确的关于Floyd思想的表达:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B.所以,我们假设maz ...
- 特邀美国EMC实战专家Mark来华授课
“轻松搞定EMC-PCB和系统设计”课程介绍 本次课程特邀美国EMC领域权威专家Mark Montrose主讲,将涵盖满足产品电磁兼容性和信号完整性的基本原理.课程涉及多个领域,不仅仅针对PCB设计, ...
- 最短路径之Floyd算法
Floyd算法又称弗洛伊德算法,也叫做Floyd's algorithm,Roy–Warshall algorithm,Roy–Floyd algorithm, WFI algorithm. Floy ...
- UVALive 4431 Fruit Weights --floyd,差分约束?
题意: 给出一些关系用aX <= bY表示, 最后查询aX 和 bY的关系,是>=,==,<=,还是不能确定,还是出现了矛盾. 解法:对每一个关系其实都可以建一条X->Y的边, ...
- 洛谷P1119 灾后重建[Floyd]
题目背景 B地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响.但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车.换句话说,只有连接着两个重建完成的村庄的公路才能 ...
- UVA10048 Audiophobia[Floyd变形]
UVA - 10048 Audiophobia Consider yourself lucky! Consider yourself lucky to be still breathing and h ...
- 最短路径—Dijkstra算法和Floyd算法
原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最后边附有我根据文中Dijkstra算法的描述使用jav ...
随机推荐
- TestNG(八) 类分组测试
package com.course.testng.groups; import org.testng.annotations.Test; @Test(groups = "stu" ...
- Chrome 查看产品原型图
1.找到产品发的原型图 2.找到文件resources\chrome\axure-chrome-extension,修改文件的后缀为rar,然后解压 3.找到chrome的extensions,找到开 ...
- 腾讯、阿里、百度、360、114 公共DNS分享
DNS,在互联网有着重要的地位,域名转换成IP,都是DNS在工作. 腾讯 DNS+ IP:119.29.29.29 备用:182.254.116.116 阿里DNS ip:223.5.5.5 223. ...
- [Advanced Python] 16 - Google style guide for programming
Ref: Python 风格指南 - 内容目录 这里主要记录一下值得注意的地方. Python语言规范 Lint:vsCode自带 导入:完整路径 异常 Ref: [Python] 07 - Stat ...
- LeetCode 230.二叉树中第k小的元素
题目: 给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的元素. 说明:你可以假设 k 总是有效的,1 ≤ k ≤ 二叉搜索树元素个数. 这道题在leetCode上难 ...
- Dubbo学习系列之十三(Mycat数据库代理)
软件界有只猫,不用我说,各位看官肯定知道是哪只,那就是大名鼎鼎的Tomcat,现在又来了一只猫,据说是位东方萌妹子,暂且认作Tom猫的表妹,本来叫OpencloudDB,后又改名为Mycat,或许Ca ...
- 为何stop()和suspend()方法不推荐使用(转)
stop()方法作为一种粗暴的线程终止行为,在线程终止之前没有对其做任何的清除操作,因此具有固有的不安全性. 用Thread.stop()方法来终止线程将会释放该线程对象已经锁定的所有监视器.如果以前 ...
- Mycat 配置文件rule.xml
rule.xml配置文件定义了我们对表进行拆分所涉及到的规则定义.我们可以灵活的对表使用不同的分片算法,或者对表使用相同的算法但具体的参数不同. 该文件里面主要有tableRule和function这 ...
- 如何设置eclipse自动提示功能
1.Window --> preferences 2.java --> Editor --> Content Assist 3.将Auto activation triggers f ...
- 品Spring:对@PostConstruct和@PreDestroy注解的处理方法
在bean的实例化过程中,也会用到一系列的相关注解. 如@PostConstruct和@PreDestroy用来标记初始化和销毁方法. 平常更多的是侧重于应用,很少会有人去了解它背后发生的事情. 今天 ...