洛谷 SP14932 LCA - Lowest Common Ancestor

洛谷评测传送门

题目描述

A tree is an undirected graph in which any two vertices are connected by exactly one simple path. In other words, any connected graph without cycles is a tree. - Wikipedia

The lowest common ancestor (LCA) is a concept in graph theory and computer science. Let T be a rooted tree with N nodes. The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself). - Wikipedia

Your task in this problem is to find the LCA of any two given nodes v and w in a given tree T.

For example the LCA of nodes 9 and 12 in this tree is the node number 3.

Input

The first line of input will be the number of test cases. Each test case will start with a number N the number of nodes in the tree, 1 <= N <= 1,000. Nodes are numbered from 1 to N. The next N lines each one will start with a number M the number of child nodes of the Nth node, 0 <= M <= 999 followed by M numbers the child nodes of the Nth node. The next line will be a number Q the number of queries you have to answer for the given tree T, 1 <= Q <= 1000. The next Q lines each one will have two number v and w in which you have to find the LCA of v and w in T, 1 <= v, w <= 1,000.

Input will guarantee that there is only one root and no cycles.

Output

For each test case print Q + 1 lines, The first line will have “Case C:” without quotes where C is the case number starting with 1. The next Q lines should be the LCA of the given v and w respectively.

Example

Input:
1
7
3 2 3 4
0
3 5 6 7
0
0
0
0
2
5 7
2 7 Output:
Case 1:
3
1

输入格式

输出格式

题意翻译

Description:

一棵树是一个简单无向图,图中任意两个节点仅被一条边连接,所有连通无环无向图都是一棵树。-Wikipedia

最近公共祖先(LCA)是……(此处省去对LCA的描述),你的任务是对一棵给定的树TT以及上面的两个节点u,vu,v求出他们的LCALCA

例如图中99和1212号节点的LCA*L*C*A*为33号节点

Input:

输入的第一行为数据组数TT,对于每组数据,第一行为一个整数N(1\leq N\leq1000)N(1≤N≤1000),节点编号从11到NN,接下来的NN行里每一行开头有一个数字M(0\leq M\leq999)M(0≤M≤999),MM为第ii个节点的子节点数量,接下来有MM个数表示第ii个节点的子节点编号。下面一行会有一个整数Q(1\leq Q\leq1000)Q(1≤Q≤1000),接下来的QQ行每行有两个数u,vu,v,输出节点u,vu,v在给定树中的LCALCA

输入数据保证只有一个根节点并且没有环。

Output:

对于每一组数据输出Q+1Q+1行,第一行格式为"Case i:"(没有双引号),i表示当前数据是第几组,接下来的QQ行每一行一个整数表示一对节点u,vu,v的LCALCA

Sample Input:

1
7
3 2 3 4
0
3 5 6 7
0
0
0
0
2
5 7
2 7

Sample Output:

Case 1:
3
1

Translated by @yxl_gl

输入输出样例

题解:

LCA模板题目双倍经验~~

点进来的小伙伴肯定还不太会LCA...

请参考蒟蒻的这篇博客:

(这里介绍了倍增求LCA,其实求LCA还有好多方式,比如离线Tarjan和树链剖分等,有兴趣的巨佬可以自己涉及,如果只求LCA的话,还是这种倍增法更快一些)

求解LCA问题的几种方式

当然,本题还有一些小细节,比如多组数据数据要清空,以及比较奇葩的读入边的方式。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=1010;
char *p1,*p2,buf[100000];
#define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
int read()
{
int x=0,f=1;
char ch=nc();
while(ch<48){if(ch=='-')f=-1;ch=nc();}
while(ch>47) x=(((x<<2)+x)<<1)+ch-48,ch=nc();
return x*f;
}
int n,m,q;
int tot,head[maxn],nxt[maxn<<1],to[maxn<<1];
int deep[maxn],fa[maxn][21];
void add(int x,int y)
{
to[++tot]=y;
nxt[tot]=head[x];
head[x]=tot;
}
void dfs(int x,int f)
{
deep[x]=deep[f]+1;
fa[x][0]=f;
for(int i=1;(1<<i)<=deep[x];i++)
fa[x][i]=fa[fa[x][i-1]][i-1];
for(int i=head[x];i;i=nxt[i])
{
int y=to[i];
if(y==f)
continue;
dfs(y,x);
}
}
int lca(int x,int y)
{
int ret;
if(deep[x]<deep[y])
swap(x,y);
for(int i=20;i>=0;i--)
if(deep[fa[x][i]]>=deep[y])
x=fa[x][i];
if(x==y)
return y;
for(int i=20;i>=0;i--)
{
if(fa[x][i]!=fa[y][i])
{
x=fa[x][i];
y=fa[y][i];
}
else
ret=fa[x][i];
}
return ret;
}
int main()
{
int t;
t=read();
for(int k=1;k<=t;k++)
{
tot=0;
memset(head,0,sizeof(head));
memset(nxt,0,sizeof(nxt));
memset(to,0,sizeof(to));
memset(deep,0,sizeof(deep));
memset(fa,0,sizeof(fa));
n=read();
for(int i=1;i<=n;i++)
{
m=read();
if(!m)
continue;
for(int j=1;j<=m;j++)
{
int u=read();
add(u,i);
add(i,u);
}
}
dfs(1,0);
q=read();
printf("Case %d:\n",k);
while(q--)
{
int u=read();
int v=read();
printf("%d\n",lca(u,v));
}
}
return 0;
}

洛谷 SP14932 LCA - Lowest Common Ancestor的更多相关文章

  1. SP14932 LCA - Lowest Common Ancestor

    Description: 一棵树是一个简单无向图,图中任意两个节点仅被一条边连接,所有连通无环无向图都是一棵树.\(-Wikipedia\) 最近公共祖先(\(LCA\))是--(此处省去对\(LCA ...

  2. SP14932 【LCA - Lowest Common Ancestor】

    专业跟队形 唯一一个有$\LaTeX$的 裸的$LCA$,我用的是$Tarjan~LCA$,注意两点相同特判 #include<iostream> #include<cstdio&g ...

  3. 寻找二叉树中的最低公共祖先结点----LCA(Lowest Common Ancestor )问题(递归)

    转自 剑指Offer之 - 树中两个结点的最低公共祖先 题目: 求树中两个节点的最低公共祖先. 思路一: ——如果是二叉树,而且是二叉搜索树,那么是可以找到公共节点的. 二叉搜索树都是排序过的,位于左 ...

  4. LeetCode 235. Lowest Common Ancestor of a Binary Search Tree (二叉搜索树最近的共同祖先)

    Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...

  5. PAT A1143 Lowest Common Ancestor (30 分)——二叉搜索树,lca

    The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U ...

  6. 235. Lowest Common Ancestor of a Binary Search Tree(LCA最低公共祖先)

      Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the ...

  7. Lowest Common Ancestor (LCA)

    题目链接 In a rooted tree, the lowest common ancestor (or LCA for short) of two vertices u and v is defi ...

  8. PAT Advanced 1143 Lowest Common Ancestor (30) [二叉查找树 LCA]

    题目 The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both ...

  9. [LeetCode] Lowest Common Ancestor of a Binary Tree 二叉树的最小共同父节点

    Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According ...

随机推荐

  1. 搭建mount+nfs远程挂载

    需求背景: 192.168.10.100 源服务器 目录:/root/test 目录属主属组普通用户,权限777 192.168.10.111 目标服务器 目录:/root/test111 目录属主属 ...

  2. js中关于带数字类型参数传参丢失首位数字0问题

    最近在项目中遇到一个问题,js中传带有数字的参数时,如果参数开头有数字0,会把0给去掉. 例如: 方法abc(0123456,789); 方法abc中获取的参数0123456就会变为123456. 原 ...

  3. cordova+vue 项目打包成APK应用遇到的问题和解决方法

    公司前端界面用的是vue,我要嵌入到Android中生成App第一步:安装nodenode安装:直接进入官网https://nodejs.org/zh-cn/,下载最新版本安装.安装之后在命令行中使用 ...

  4. Linux笔记15 使用Apache服务部署静态网站。

    配置服务文件参数Linux系统中的配置文件 服务目录 /etc/httpd 主配置文件 /etc/httpd/conf/httpd.conf 网站数据目录 /var/www/html 访问日志 /va ...

  5. 冒泡排序(C语言)

    # include<stdio.h> int main(void) { int arr[10]={5,4,7,9,2,3,1,6,10,8}; //定义一个位排序的数组 int i; // ...

  6. nmcli详解

    1. nmcli 安装 [root@liujunjun ~]# yum install -y NetworkManager CentOS7默认已安装了 2. nmcli 基本选项 选项 作用 -t 简 ...

  7. core-js@3带来的惊喜

    core-js 这个名词肯定很多人没听过,今天也是在配置babelpolyfill方法发现的 起因 在使用useBuiltIns:usage按需加载polyfill时,npm run build,就出 ...

  8. filter,map,reduce三个数组高阶函数的使用

    filter ,map ,reduce三个高阶函数的使用 普通方法解决数据问题 const nums1= [10,20,111,222,444,40,50] // 需求1.取出小于100的数字 // ...

  9. Mybatis基本类型参数非空判断(异常:There is no getter for property...)

    先看一小段代码 <select id="queryByPhone" parameterType="java.lang.String" resultType ...

  10. Jupyter Notebook 使用小记

    简介 Jupyter Notebook 是一款几乎综合所有编程语言,能够把软件代码.计算输出.解释文档.多媒体资源整合在一起的多功能科学计算平台.具有如下优点: 整合所有资源 交互性编程体验 零成本重 ...