二进制炸弹是第三章《程序的机器级表示》的配套实验,这章主要介绍了x64汇编,包括:操作数的表示方式,数据传送指令,算术和逻辑指令,控制流跳转指令,过程(procedure)的实现与运行时栈帧,C语言中的数组,struct,union以及浮点数的汇编表示等。通过这章的学习,对C有了更深的理解,可以看出,C与汇编代码的相似度很高,称之为高级汇编也不为过。

这个实验提供了一个 Linux/x86-64 二进制程序(下载地址:CSAPP: Labs),即所谓的“二进制炸弹”。执行这个程序,它会要求你逐个输入6个字符串,只要输错了一个,“炸弹”就会被引爆。实验要求我们利用GDB对这个“炸弹”进行逆向工程,找到6个正确的字符串。整个实验十分有趣,寓教于乐,完成之后很有成就感。实验的基本思路如下:

  • 在各个检查输入字符串的地方设断点
  • 先随便输入字符串,执行到断点处
  • 反汇编,找到正确字符串,保存答案,去掉对应的断点,继续

GDB的各种操作,下载一张速查表,反复用就熟悉了。实验也提供了“炸弹”的main函数源码,可以看出输入的字符串分别由6个函数检查,分别是 phase_1phase_2,...,phase_6。在phase_1设好断点,实验就开始啦:

$ gdb bomb
(gdb) break phase_1
(gdb) run

phase_1

(gdb) disas 反汇编代码如下:

=> 0x0000000000400ee0 <+0>: sub    $0x8,%rsp
0x0000000000400ee4 <+4>: mov $0x402400,%esi
0x0000000000400ee9 <+9>: callq 0x401338 <strings_not_equal>
0x0000000000400eee <+14>: test %eax,%eax
0x0000000000400ef0 <+16>: je 0x400ef7 <phase_1+23>
0x0000000000400ef2 <+18>: callq 0x40143a <explode_bomb>
0x0000000000400ef7 <+23>: add $0x8,%rsp
0x0000000000400efb <+27>: retq

phase_1把两个字符串传给了strings_not_equal,若两个字符串不相等,炸弹就爆炸。输入的字符串是第一个参数%rdi$0x402400是第二个参数,(gdb) print (char*) 0x402400,打印出来就是第一个字符串,第一题比较简单。

phase_2

Dump of assembler code for function phase_2:
=> 0x0000000000400efc <+0>: push %rbp
0x0000000000400efd <+1>: push %rbx
0x0000000000400efe <+2>: sub $0x28,%rsp
0x0000000000400f02 <+6>: mov %rsp,%rsi
0x0000000000400f05 <+9>: callq 0x40145c <read_six_numbers>
0x0000000000400f0a <+14>: cmpl $0x1,(%rsp)
0x0000000000400f0e <+18>: je 0x400f30 <phase_2+52>
0x0000000000400f10 <+20>: callq 0x40143a <explode_bomb>
0x0000000000400f15 <+25>: jmp 0x400f30 <phase_2+52>
0x0000000000400f17 <+27>: mov -0x4(%rbx),%eax
0x0000000000400f1a <+30>: add %eax,%eax
0x0000000000400f1c <+32>: cmp %eax,(%rbx)
0x0000000000400f1e <+34>: je 0x400f25 <phase_2+41>
0x0000000000400f20 <+36>: callq 0x40143a <explode_bomb>
0x0000000000400f25 <+41>: add $0x4,%rbx
0x0000000000400f29 <+45>: cmp %rbp,%rbx
0x0000000000400f2c <+48>: jne 0x400f17 <phase_2+27>
0x0000000000400f2e <+50>: jmp 0x400f3c <phase_2+64>
0x0000000000400f30 <+52>: lea 0x4(%rsp),%rbx
0x0000000000400f35 <+57>: lea 0x18(%rsp),%rbp
0x0000000000400f3a <+62>: jmp 0x400f17 <phase_2+27>
0x0000000000400f3c <+64>: add $0x28,%rsp
0x0000000000400f40 <+68>: pop %rbx
0x0000000000400f41 <+69>: pop %rbp
0x0000000000400f42 <+70>: retq

翻译回C语言如下,第3行sub $0x28,%rsp 分配了一个数组,向前的跳转是循环,第二个字符串是个等比数列"1 2 4 8 16 32"

void phase_2(const char* input) {
int rsp[6];
read_six_numbers(rsp, nums);
if (rsp[0] != 1)
explode_bomb(); int* rbx = rsp + 1;
int* rpb = rsp + 6;
do {
int eax = rbx[-1];
eax += eax;
if (*rbx != eax)
explode_bomb(); rbx += 1;
} while (rbx != rbp)
}

phase_3

Dump of assembler code for function phase_3:
=> 0x0000000000400f43 <+0>: sub $0x18,%rsp
0x0000000000400f47 <+4>: lea 0xc(%rsp),%rcx
0x0000000000400f4c <+9>: lea 0x8(%rsp),%rdx
0x0000000000400f51 <+14>: mov $0x4025cf,%esi
0x0000000000400f56 <+19>: mov $0x0,%eax
0x0000000000400f5b <+24>: callq 0x400bf0 <__isoc99_sscanf@plt>
0x0000000000400f60 <+29>: cmp $0x1,%eax
0x0000000000400f63 <+32>: jg 0x400f6a <phase_3+39>
0x0000000000400f65 <+34>: callq 0x40143a <explode_bomb>
0x0000000000400f6a <+39>: cmpl $0x7,0x8(%rsp)
0x0000000000400f6f <+44>: ja 0x400fad <phase_3+106>
0x0000000000400f71 <+46>: mov 0x8(%rsp),%eax
0x0000000000400f75 <+50>: jmpq *0x402470(,%rax,8)
0x0000000000400f7c <+57>: mov $0xcf,%eax
0x0000000000400f81 <+62>: jmp 0x400fbe <phase_3+123>
0x0000000000400f83 <+64>: mov $0x2c3,%eax
0x0000000000400f88 <+69>: jmp 0x400fbe <phase_3+123>
0x0000000000400f8a <+71>: mov $0x100,%eax
0x0000000000400f8f <+76>: jmp 0x400fbe <phase_3+123>
0x0000000000400f91 <+78>: mov $0x185,%eax
0x0000000000400f96 <+83>: jmp 0x400fbe <phase_3+123>
0x0000000000400f98 <+85>: mov $0xce,%eax
0x0000000000400f9d <+90>: jmp 0x400fbe <phase_3+123>
0x0000000000400f9f <+92>: mov $0x2aa,%eax
0x0000000000400fa4 <+97>: jmp 0x400fbe <phase_3+123>
0x0000000000400fa6 <+99>: mov $0x147,%eax
0x0000000000400fab <+104>: jmp 0x400fbe <phase_3+123>
0x0000000000400fad <+106>: callq 0x40143a <explode_bomb>
0x0000000000400fb2 <+111>: mov $0x0,%eax
0x0000000000400fb7 <+116>: jmp 0x400fbe <phase_3+123>
0x0000000000400fb9 <+118>: mov $0x137,%eax
0x0000000000400fbe <+123>: cmp 0xc(%rsp),%eax
0x0000000000400fc2 <+127>: je 0x400fc9 <phase_3+134>
0x0000000000400fc4 <+129>: callq 0x40143a <explode_bomb>
0x0000000000400fc9 <+134>: add $0x18,%rsp
0x0000000000400fcd <+138>: retq

2 - 10:调用sscanf,格式地址在0x4025cf,值为"%d %d",可见这一关要求输入两个整数。

11 - 12:要求第一个整数小于等于7。

13 - 14:典型的switch语句,根据第一个整数的值跳转,跳转表地址为0x402470。

15 - 34:根据跳转表设置第二个整数,答案不唯一,有8个,随便选个"0 207"

(gdb) x /8xg 0x402470打印跳转表如下:

0x402470:   0x0000000000400f7c 0x0000000000400fb9
0x402480: 0x0000000000400f83 0x0000000000400f8a
0x402490: 0x0000000000400f91 0x0000000000400f98
0x4024a0: 0x0000000000400f9f 0x0000000000400fa6

phase_4

Dump of assembler code for function phase_4:
=> 0x000000000040100c <+0>: sub $0x18,%rsp
0x0000000000401010 <+4>: lea 0xc(%rsp),%rcx
0x0000000000401015 <+9>: lea 0x8(%rsp),%rdx
0x000000000040101a <+14>: mov $0x4025cf,%esi
0x000000000040101f <+19>: mov $0x0,%eax
0x0000000000401024 <+24>: callq 0x400bf0 <__isoc99_sscanf@plt>
0x0000000000401029 <+29>: cmp $0x2,%eax
0x000000000040102c <+32>: jne 0x401035 <phase_4+41>
0x000000000040102e <+34>: cmpl $0xe,0x8(%rsp)
0x0000000000401033 <+39>: jbe 0x40103a <phase_4+46>
0x0000000000401035 <+41>: callq 0x40143a <explode_bomb>
0x000000000040103a <+46>: mov $0xe,%edx
0x000000000040103f <+51>: mov $0x0,%esi
0x0000000000401044 <+56>: mov 0x8(%rsp),%edi
0x0000000000401048 <+60>: callq 0x400fce <func4>
0x000000000040104d <+65>: test %eax,%eax
0x000000000040104f <+67>: jne 0x401058 <phase_4+76>
0x0000000000401051 <+69>: cmpl $0x0,0xc(%rsp)
0x0000000000401056 <+74>: je 0x40105d <phase_4+81>
0x0000000000401058 <+76>: callq 0x40143a <explode_bomb>
0x000000000040105d <+81>: add $0x18,%rsp
0x0000000000401061 <+85>: retq

2 - 9:同phase_3,这一关也要求输入两个整数。

10 - 12:要求第一个整数小于等于 0xe。

13 - 16:调用func4(第一个整数, 0, 0xe)

17 - 18:要求func4返回 0。

19 - 20:要求第二个整数为 0。

接着看func4

Dump of assembler code for function func4:
0x0000000000400fce <+0>: sub $0x8,%rsp
0x0000000000400fd2 <+4>: mov %edx,%eax
0x0000000000400fd4 <+6>: sub %esi,%eax
0x0000000000400fd6 <+8>: mov %eax,%ecx
0x0000000000400fd8 <+10>: shr $0x1f,%ecx
0x0000000000400fdb <+13>: add %ecx,%eax
0x0000000000400fdd <+15>: sar %eax
0x0000000000400fdf <+17>: lea (%rax,%rsi,1),%ecx
0x0000000000400fe2 <+20>: cmp %edi,%ecx
0x0000000000400fe4 <+22>: jle 0x400ff2 <func4+36>
0x0000000000400fe6 <+24>: lea -0x1(%rcx),%edx
0x0000000000400fe9 <+27>: callq 0x400fce <func4>
0x0000000000400fee <+32>: add %eax,%eax
0x0000000000400ff0 <+34>: jmp 0x401007 <func4+57>
0x0000000000400ff2 <+36>: mov $0x0,%eax
0x0000000000400ff7 <+41>: cmp %edi,%ecx
0x0000000000400ff9 <+43>: jge 0x401007 <func4+57>
0x0000000000400ffb <+45>: lea 0x1(%rcx),%esi
0x0000000000400ffe <+48>: callq 0x400fce <func4>
0x0000000000401003 <+53>: lea 0x1(%rax,%rax,1),%eax
0x0000000000401007 <+57>: add $0x8,%rsp
0x000000000040100b <+61>: retq

翻译回C语言如下,注意shr是逻辑右移,sar是算术右移。要使func4(rdi, 0, 0xe)返回 0,必须rcx == rdi,很容易计算得出rcx为7,因此第一个整数为7,第四关答案为"7 0"

int func4(int rdi, int rsi, int rdx) {
int rax = rdx - rsi;
rax += ((rax >> 31) & 1);
rax >>= 1; int rcx = rax + rsi;
if (rcx > rdi) {
rdx = rcx - 1;
return 2 * func4(rdi, rsi, rdx);
} rax = 0;
if (rcx < rdi) {
rsi = rcx + 1;
return 2 * func4(rdi, rsi, rdx) + 1;
} return rax;
}

phase_5

Dump of assembler code for function phase_5:
=> 0x0000000000401062 <+0>: push %rbx
0x0000000000401063 <+1>: sub $0x20,%rsp
0x0000000000401067 <+5>: mov %rdi,%rbx
0x000000000040106a <+8>: mov %fs:0x28,%rax
0x0000000000401073 <+17>: mov %rax,0x18(%rsp)
0x0000000000401078 <+22>: xor %eax,%eax
0x000000000040107a <+24>: callq 0x40131b <string_length>
0x000000000040107f <+29>: cmp $0x6,%eax
0x0000000000401082 <+32>: je 0x4010d2 <phase_5+112>
0x0000000000401084 <+34>: callq 0x40143a <explode_bomb>
0x0000000000401089 <+39>: jmp 0x4010d2 <phase_5+112>
0x000000000040108b <+41>: movzbl (%rbx,%rax,1),%ecx
0x000000000040108f <+45>: mov %cl,(%rsp)
0x0000000000401092 <+48>: mov (%rsp),%rdx
0x0000000000401096 <+52>: and $0xf,%edx
0x0000000000401099 <+55>: movzbl 0x4024b0(%rdx),%edx
0x00000000004010a0 <+62>: mov %dl,0x10(%rsp,%rax,1)
0x00000000004010a4 <+66>: add $0x1,%rax
0x00000000004010a8 <+70>: cmp $0x6,%rax
0x00000000004010ac <+74>: jne 0x40108b <phase_5+41>
0x00000000004010ae <+76>: movb $0x0,0x16(%rsp)
0x00000000004010b3 <+81>: mov $0x40245e,%esi
0x00000000004010b8 <+86>: lea 0x10(%rsp),%rdi
0x00000000004010bd <+91>: callq 0x401338 <strings_not_equal>
0x00000000004010c2 <+96>: test %eax,%eax
0x00000000004010c4 <+98>: je 0x4010d9 <phase_5+119>
0x00000000004010c6 <+100>: callq 0x40143a <explode_bomb>
0x00000000004010cb <+105>: nopl 0x0(%rax,%rax,1)
0x00000000004010d0 <+110>: jmp 0x4010d9 <phase_5+119>
0x00000000004010d2 <+112>: mov $0x0,%eax
0x00000000004010d7 <+117>: jmp 0x40108b <phase_5+41>
0x00000000004010d9 <+119>: mov 0x18(%rsp),%rax
0x00000000004010de <+124>: xor %fs:0x28,%rax
0x00000000004010e7 <+133>: je 0x4010ee <phase_5+140>
0x00000000004010e9 <+135>: callq 0x400b30 <__stack_chk_fail@plt>
0x00000000004010ee <+140>: add $0x20,%rsp
0x00000000004010f2 <+144>: pop %rbx
0x00000000004010f3 <+145>: retq

3 - 4:分配一段栈空间(数组),保存输入的字符串到%rbx

5 - 7:设置哨兵值,保护栈空间。

8 - 11:要求字符串长度为 6。

12 - 22:为一个循环,翻译回C如下,这段代码将输入的字符串做了个转换:

取字符的后4位作为索引,从预设的一个长字符串取转换后的字符。

23 - 26:比较转换后的字符串和预期的是否相等。

从预期的字符串以及转换规则反推回去,可得到第5关的答案是"9?>567"

const char* pattern =  // 第17行,print (char*) 0x4024b0
"maduiersnfotvbylSo you think you can stop the bomb with ctrl-c, do you?"; const char* input = "9?>567"; char transformed[7]; // 第3, 4行分配的数组
for (int rax = 0; rax != 6; ++rax) {
int rcx = input[rax];
int rdx = rcx & 0xf;
transformed[rax] = (char)pattern[rdx];
}
transformed[6] = 0; // 第22行
const char* expected = "flyers"; // 第23行,print (char*) 0x40245e

phase_6

这一关反汇编代码太长了,屏幕一页都放不下,最好分段分析。

Dump of assembler code for function phase_6:
=> 0x00000000004010f4 <+0>: push %r14
0x00000000004010f6 <+2>: push %r13
0x00000000004010f8 <+4>: push %r12
0x00000000004010fa <+6>: push %rbp
0x00000000004010fb <+7>: push %rbx
0x00000000004010fc <+8>: sub $0x50,%rsp
0x0000000000401100 <+12>: mov %rsp,%r13
0x0000000000401103 <+15>: mov %rsp,%rsi
0x0000000000401106 <+18>: callq 0x40145c <read_six_numbers>

第一部分,分配了数组,读取6个数字,可见这一关要求我们输入6数字。

看到后面的反汇编有不止一个循环,可以分循环分析。

   0x000000000040110b <+23>:    mov    %rsp,%r14
0x000000000040110e <+26>: mov $0x0,%r12d
0x0000000000401114 <+32>: mov %r13,%rbp
0x0000000000401117 <+35>: mov 0x0(%r13),%eax
0x000000000040111b <+39>: sub $0x1,%eax
0x000000000040111e <+42>: cmp $0x5,%eax
0x0000000000401121 <+45>: jbe 0x401128 <phase_6+52>
0x0000000000401123 <+47>: callq 0x40143a <explode_bomb>
0x0000000000401128 <+52>: add $0x1,%r12d
0x000000000040112c <+56>: cmp $0x6,%r12d
0x0000000000401130 <+60>: je 0x401153 <phase_6+95>
0x0000000000401132 <+62>: mov %r12d,%ebx
0x0000000000401135 <+65>: movslq %ebx,%rax
0x0000000000401138 <+68>: mov (%rsp,%rax,4),%eax
0x000000000040113b <+71>: cmp %eax,0x0(%rbp)
0x000000000040113e <+74>: jne 0x401145 <phase_6+81>
0x0000000000401140 <+76>: callq 0x40143a <explode_bomb>
0x0000000000401145 <+81>: add $0x1,%ebx
0x0000000000401148 <+84>: cmp $0x5,%ebx
0x000000000040114b <+87>: jle 0x401135 <phase_6+65>
0x000000000040114d <+89>: add $0x4,%r13
0x0000000000401151 <+93>: jmp 0x401114 <phase_6+32>

上面这段包含了两个循环,翻译回C语言如下:

int input[6];

for (int r12d = 0; r12d != 6; ++r12d) {
int rax = input[r12d];
if (rax - 1 > 5)
explode_bomb(); for (int rbx = r12d + 1; rbx <= 5; ++rbx) {
if (rax == input[rbx])
explode_bomb();
}
}

这段代码检查了输入的6个数字,要求它们都小于等于6,互不相等,且要大于0,所以答案是1 2 3 4 5 6的排列。继续看下一部分:

   0x0000000000401153 <+95>:    lea    0x18(%rsp),%rsi
0x0000000000401158 <+100>: mov %r14,%rax
0x000000000040115b <+103>: mov $0x7,%ecx
0x0000000000401160 <+108>: mov %ecx,%edx
0x0000000000401162 <+110>: sub (%rax),%edx
0x0000000000401164 <+112>: mov %edx,(%rax)
0x0000000000401166 <+114>: add $0x4,%rax
0x000000000040116a <+118>: cmp %rsi,%rax
0x000000000040116d <+121>: jne 0x401160 <phase_6+108>

上面这部分代码对输入数组做了转换:input[i] = 7 - input[i],是出题老师为了增加难度吗:)继续:

0x000000000040116f <+123>:   mov    $0x0,%esi
0x0000000000401174 <+128>: jmp 0x401197 <phase_6+163>
0x0000000000401176 <+130>: mov 0x8(%rdx),%rdx
0x000000000040117a <+134>: add $0x1,%eax
0x000000000040117d <+137>: cmp %ecx,%eax
0x000000000040117f <+139>: jne 0x401176 <phase_6+130>
0x0000000000401181 <+141>: jmp 0x401188 <phase_6+148>
0x0000000000401183 <+143>: mov $0x6032d0,%edx
0x0000000000401188 <+148>: mov %rdx,0x20(%rsp,%rsi,2)
0x000000000040118d <+153>: add $0x4,%rsi
0x0000000000401191 <+157>: cmp $0x18,%rsi
0x0000000000401195 <+161>: je 0x4011ab <phase_6+183>
0x0000000000401197 <+163>: mov (%rsp,%rsi,1),%ecx
0x000000000040119a <+166>: cmp $0x1,%ecx
0x000000000040119d <+169>: jle 0x401183 <phase_6+143>
0x000000000040119f <+171>: mov $0x1,%eax
0x00000000004011a4 <+176>: mov $0x6032d0,%edx
0x00000000004011a9 <+181>: jmp 0x401176 <phase_6+130>

上面这部分代码比较难理解,实际包含了两个循环:<+130><+139>以及<+143><+169>。其中<+163><+181>决定了该跳转到哪个循环,只有input数组中的值为1时才执行第二个循环。打印出<+143><+176>中的地址0x6032d0,发现它是一个链表。结合这些信息,翻译回C语言,发现这些代码只是根据input数组按数序将链表的节点存入另一个数组nodes

(gdb) x /12xg 0x6032d0

0x6032d0 <node1>:   0x000000010000014c 0x00000000006032e0
0x6032e0 <node2>: 0x00000002000000a8 0x00000000006032f0
0x6032f0 <node3>: 0x000000030000039c 0x0000000000603300
0x603300 <node4>: 0x00000004000002b3 0x0000000000603310
0x603310 <node5>: 0x00000005000001dd 0x0000000000603320
0x603320 <node6>: 0x00000006000001bb 0x0000000000000000
struct node {
uint64_t value;
struct node* next;
}* nodes[6]; for (int rsi = 0; rsi != 6; ++rsi) {
int rcx = input[rsi];
struct node* rdx = &node1; for (int rax = 1; rax != rcx; ++rax) {
rdx = rdx->next;
} nodes[rsi] = rdx;
}

继续看反汇编代码:

   0x00000000004011ab <+183>:   mov    0x20(%rsp),%rbx
0x00000000004011b0 <+188>: lea 0x28(%rsp),%rax
0x00000000004011b5 <+193>: lea 0x50(%rsp),%rsi
0x00000000004011ba <+198>: mov %rbx,%rcx
0x00000000004011bd <+201>: mov (%rax),%rdx
0x00000000004011c0 <+204>: mov %rdx,0x8(%rcx)
0x00000000004011c4 <+208>: add $0x8,%rax
0x00000000004011c8 <+212>: cmp %rsi,%rax
0x00000000004011cb <+215>: je 0x4011d2 <phase_6+222>
0x00000000004011cd <+217>: mov %rdx,%rcx
0x00000000004011d0 <+220>: jmp 0x4011bd <phase_6+201>

以上这段比较好理解,就是根据nodes数组按顺序重写了链表各节点的next字段,接着看,最后一段了:

   0x00000000004011d2 <+222>:   movq   $0x0,0x8(%rdx)
0x00000000004011da <+230>: mov $0x5,%ebp
0x00000000004011df <+235>: mov 0x8(%rbx),%rax
0x00000000004011e3 <+239>: mov (%rax),%eax
0x00000000004011e5 <+241>: cmp %eax,(%rbx)
0x00000000004011e7 <+243>: jge 0x4011ee <phase_6+250>
0x00000000004011e9 <+245>: callq 0x40143a <explode_bomb>
0x00000000004011ee <+250>: mov 0x8(%rbx),%rbx
0x00000000004011f2 <+254>: sub $0x1,%ebp
0x00000000004011f5 <+257>: jne 0x4011df <phase_6+235>

这段也简单,遍历链表,要求链表各节点的低位4字节按从大到小的顺序排列。

综上,最后一关要求输入1 2 3 4 5 66个数字的一个排列顺序,然后将数字i转换为7 - i

再将预设好的一个链表按顺序重新链接,要求重新链接后的链表各节点的值按从大到小的顺序排列。

根据打印出来的链表信息,可以推出答案是"4 3 2 1 6 5"

《CSAPP》实验二:二进制炸弹的更多相关文章

  1. csapp lab2 bomb 二进制炸弹《深入理解计算机系统》

    bomb炸弹实验 首先对bomb这个文件进行反汇编,得到一个1000+的汇编程序,看的头大. phase_1: 0000000000400ef0 <phase_1>: 400ef0: 48 ...

  2. BinaryBombs(二进制炸弹实验)

    实验介绍 使用所学知识拆除Binary Bombs来增强对程序的机器级表示.汇编语言.调试器和逆向工程等理解. Binary Bombs(二进制炸弹)是一个可执行程序,是C语言编译链接成的,包含pha ...

  3. CSAPP:逆向工程【二进制炸弹】

    转载请注明出处:https://www.cnblogs.com/ustca/p/11694127.html 二进制炸弹任务描述 拓展:缓冲区溢出攻击 "二进制炸弹包含若干个阶段,每个阶段需要 ...

  4. 2017-2018-1 信息安全技术 实验二 20155201——Windows口令破解

    2017-2018-1 信息安全技术 实验二 20155201--Windows口令破解 一.实验原理 口令破解方法 口令破解主要有两种方法:字典破解和暴力破解. 字典破解是指通过破解者对管理员的了解 ...

  5. 20155231 信息安全技术概论实验二 Windows口令破解

    20155231 信息安全技术概论实验二 Windows口令破解 实验目的 了解Windows口令破解原理 对信息安全有直观感性认识 能够运用工具实现口令破解 实验人数 每组一人 系统环境 windo ...

  6. 20155339 《信息安全技术》实验二、Windows口令破解实验报告

    20155339 <信息安全技术>实验二.Windows口令破解实验报告 实验目的 了解Windows口令破解原理 对信息安全有直观感性认识 能够运用工具实现口令破解 系统环境 Windo ...

  7. 20145215&20145307《信息安全系统设计基础》实验二 固件设计

    20145215&20145307<信息安全系统设计基础>实验二 固件设计 实验目的与要求 了解多线程程序设计的基本原理,学习 pthread 库函数的使用. 了解在 linux ...

  8. FPGA与simulink联合实时环路系列——实验二LED

    实验二LED 实验内容 在实验一的基础上,将simulink产生的测试信号输出到FPGA开发板上的LED灯进行显示,这里要在生成的硬件模型上进行修改,将传送到FPGA的信号输出到8个LED灯上,并且对 ...

  9. 20145204&20145212信息安全系统实验二

    20145204&20145212信息安全系统实验二 链接

随机推荐

  1. 【论文阅读】A practical algorithm for distributed clustering and outlier detection

    文章提出了一种分布式聚类的算法,这是第一个有理论保障的考虑离群点的分布式聚类算法(文章里自己说的).与之前的算法对比有以下四个优点: 1.耗时短O(max{k,logn}*n), 2.传递信息规模小: ...

  2. day 41 css固定位置 以及小米商城项目

    .如何让一个绝对定位的盒子居中 left:%; margin-left:- 宽度的一半 .固定定位 position: fixed; ()脱标 参考点:浏览器的左上角 作用:固定导航栏 返回顶部 小广 ...

  3. vue路由跳转

  4. Java并发编程:Callable、Future和FutureTask【转】

    原文链接:http://www.cnblogs.com/dolphin0520/p/3949310.html 创建线程的2种方式,一种是直接继承Thread,另外一种就是实现Runnable接口. 这 ...

  5. 【Android - 控件】之MD - CoordinatorLayout的使用

    CoordinatorLayout是Android 5.0新特性——Material Design中的一个布局控件,主要用来协调各个子视图之间的工作,也可以用来作为顶部布局.CoordinatorLa ...

  6. CentOS 7 Cobbler 安装

    Cobbler介绍 Cobbler是一个Linux服务器快速网络安装的服务,而且在经过调整也可以支持网络安装windows. 使用python开发,小巧轻便(才15k行python代码),可以通过网络 ...

  7. 原创001 | 搭上SpringBoot自动注入源码分析专车

    前言 如果这是你第二次看到师长的文章,说明你在觊觎我的美色!O(∩_∩)O哈哈~ 点赞+关注再看,养成习惯 没别的意思,就是需要你的窥屏^_^ 本系列为SpringBoot深度源码专车系列,第一篇发车 ...

  8. Python Kite 使用教程 轻量级代码提示

    1: 概述 今天升级annacoda 插件 spyder  (4.0.0 )的时候 提示安装kite ,这是什么玩意? 下载下来试一试? 原来:就是一个代码提示插件.. 说白了" 就是让开发 ...

  9. python_爬虫

    1.网络爬虫    1.定义:网络蜘蛛,网络机器人,抓取网络数据的程序    2.总结:用Python程序去模仿人去访问网站,模仿的越逼真越好    3.目的:通过有效的大量的数据分析市场走势,公司的 ...

  10. Android 子线程更新UI 异常

    众所周知,Android是不可以在子线程中直接更新UI的,需要借助Handler或者View.post(Runnable runnable)或者runOnUIThread(Runnable runna ...