首先进行一步转化

\(a_j \leq a_i + q - sqrt(abs(i - j))\)

\(a_i + q \geq a_j + sqrt(abs(i-j))\)

即 $q = max (a_j + sqrt(abs(i-j))) - a_i $

我们对\(i \geq j 和 j > i\) 分类讨论, 其实解决一种情况后将序列翻转再做一遍即可

有一种O(\(n^2\))的dp暴力应该不难想到

那么我们现在思考如何以比较优秀的时间复杂度解决

这里涉及到决策单调性

简单的说, 对于i来说, 它的答案来源是另一点j,

那么所有答案来源排成的序列\(j_1,j_2,j_3,\cdots j_n\) 具有单调性

比如: 1112255566666666678888

那么我们可以考虑对于每一个i, 它可以成为哪一段区间的答案

即一个三元组(l, r, i) 对应i控制l到r

可以二分+栈(或队列)处理

二分i和栈顶答案相等临界, 若临界小于l则弹栈重复操作

否则将新的(l, r, i) 压倒栈中

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
#define ll long long
using namespace std;
const int N = 500080;
struct node{
ll l, r, x;
};
deque<node> q;
ll read() {
ll x = 0, f = 1;
char c = getchar();
while (!isdigit(c)) {
if (c == '-') f = -1;
c = getchar();
}
while (isdigit(c)) {
x = (x << 3) + (x << 1) + c - '0';
c = getchar();
}
return x * f;
} //快读
ll n;
long double ans[N], a[N];
bool check(ll x,ll y,ll k) {
return a[x] + sqrt(k - x) > a[y] + sqrt(k - y);
}
void work(void) {
node k = (node){1, n, 1};
for (ll i = 2;i <= n; i++) {
if (a[i] < a[k.x]) continue; //剪枝, 如果满足则它一定不会有贡献
ll l = i, r = n, mid;
while (l <= r) {
mid = (l + r) >> 1;
if (check(k.x, i, mid)) l = mid + 1;
else r = mid - 1;
}//二分
if (l == n + 1) continue;
if (l <= k.l) {
k = q.front();
q.pop_front();
i--;
continue;
}//弹栈
k.r = r;
q.push_front(k);
k = (node){l, n, i}; //压栈
}
q.push_front(k);
k = q.back();
q.pop_back();
for (ll i = 1;i <= n; i++) {
if (k.r < i) {
k = q.back();
q.pop_back();
}
ans[i] = max(ans[i], a[k.x] + sqrt(i - k.x)); //要做两次,所以取max
}
} int main() {
n = read();
for (int i = 1;i <= n; i++)
a[i] = read(), ans[i] = a[i];
work();
for (int j = 1;j << 1 <= n; j++)
swap(a[j], a[n-j+1]), swap(ans[j], ans[n-j+1]);
//翻转
while (q.size()) q.pop_front();
work();
///*
for (int i = n;i >= 1; i--)
printf ("%d\n", int(ceil(ans[i]) - a[i]));
//*/
return 0;
}

P3515 [POI2011]Lightning Conductor的更多相关文章

  1. P3515 [POI2011]Lightning Conductor(决策单调性分治)

    P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下 ...

  2. 洛谷P3515 [POI2011]Lightning Conductor(动态规划,决策单调性,单调队列)

    洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 ...

  3. 洛谷P3515 [POI2011]Lightning Conductor(决策单调性)

    题意 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) ...

  4. P3515 [POI2011]Lightning Conductor[决策单调性优化]

    给定一序列,求对于每一个$a_i$的最小非负整数$p_i$,使得$\forall j \neq i $有$ p_i>=a_j-a_i+ \sqrt{|i-j|}$. 绝对值很烦 ,先分左右情况单 ...

  5. [bzoj 2216] [Poi2011] Lightning Conductor

    [bzoj 2216] [Poi2011] Lightning Conductor Description 已知一个长度为n的序列a1,a2,-,an. 对于每个1<=i<=n,找到最小的 ...

  6. 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性

    [BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...

  7. 【BZOJ】2216: [Poi2011]Lightning Conductor

    题意 给一个长度为\(n\)的序列\(a_i\),对于每个\(1 \le i \le n\),找到最小的非负整数\(p\)满足 对于任意的\(j\), \(a_j \le a_i + p - \sqr ...

  8. BZOJ2216 : [Poi2011]Lightning Conductor

    $f[i]=\max(a[j]+\lceil\sqrt{|i-j|}\rceil)$, 拆开绝对值,考虑j<i,则决策具有单调性,j>i同理, 所以可以用分治$O(n\log n)$解决. ...

  9. bzoj 2216 [Poi2011]Lightning Conductor——单调队列+二分处理决策单调性

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2216 那个关于位置的代价是带根号的,所以随着距离的增加而增长变慢:所以靠后的位置一旦比靠前的 ...

随机推荐

  1. C#开发BIMFACE系列16 服务端API之获取模型数据1:查询满足条件的构件ID列表

    系列目录     [已更新最新开发文章,点击查看详细] 源文件/模型转换完成之后,可以获取模型的具体数据.本篇介绍根据文件ID查询满足条件的构件ID列表. 请求地址:GET https://api.b ...

  2. Bluetooth(蓝牙)连接过程分析

    一 基本概念 蓝牙的连接过程是十分重要的,特别是做蓝牙的技术人员来说,这个是十分重要的.理它的流程,是一件必修课.虽然进入蓝牙行业很久了,以前没怎么系统化的做一些事情,趁此机会,就梳理一下这里面的内容 ...

  3. 洛谷P2216: [HAOI2007]理想的正方形 单调队列优化DP

    洛谷P2216 )逼着自己写DP 题意: 给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小. 思路: 先处理出每一行每个格子到前面n个格子中的最大值和最小值.然后对每一 ...

  4. POJ-3662 Telephone Lines 二分+双端队列

    题目传送门 题意:有n个点, p条路,每条道路有个花费Li, 然后现在要建一条1-n的路线,然后可以选k条道路免费, 然后可以在剩下的道路中选择价格最高的边支付费用, 求这个答案最小. 题解: 二分答 ...

  5. 牛客小白月赛6 F 发电 树状数组单点更新 求区间乘积 模板

    链接:https://www.nowcoder.com/acm/contest/136/F来源:牛客网  HA实验是一个生产.提炼“神力水晶”的秘密军事基地,神力水晶可以让机器的工作效率成倍提升.   ...

  6. UVA - 315 Network(tarjan求割点的个数)

    题目链接:https://vjudge.net/contest/67418#problem/B 题意:给一个无向连通图,求出割点的数量.首先输入一个N(多实例,0结束),下面有不超过N行的数,每行的第 ...

  7. 对git使用的初步总结

    使用git也才一周多,就已经深深爱上这款软件了. 之前公司一直用的是clearcase,一款老到除了公司内部的人和曾经开发这款软件的人,估计再也不会有人知道了吧! (当然也许还会有其他公司也会使用,因 ...

  8. 适合C++のOIer平日写题的开场模板

    上面的#define还是较充足的,快读模板也有,freopen也提前打好了,比较适合OIer(C++)平时刷题和考试的开场. (纯原版仅供SJZEZのORZ队&AFO队使用) (您老把开头的注 ...

  9. window下载安装maven

    Maven官网下载地址:https://maven.apache.org/download.cgi,这里我们下载zip包即可  解压到安装目录下  新建环境变量MAVEN_HOME,复制Maven安装 ...

  10. Redis 的底层数据结构(SDS和链表)

    Redis 是一个开源(BSD许可)的,内存中的数据结构存储系统,它可以用作数据库.缓存和消息中间件.可能几乎所有的线上项目都会使用到 Redis,无论你是做缓存.或是用作消息中间件,用起来很简单方便 ...