【2019.8.11上午 慈溪模拟赛 T3】欢迎回来(back)(设阈值+莫队)
设阈值
考虑对于询问的\(d\)设阈值进行分别处理。
对于\(d\le\sqrt{max\ d}\)的询问,我们可以\(O(n\sqrt{max\ d})\)预处理答案,\(O(1)\)输出。
对于\(d>\sqrt{max\ d}\)的询问,我们可以爆枚其倍数。然后就变成询问一个区间内一些数的个数,可以考虑用莫队。考虑到移动和询问的根号是分开计算的,所以复杂度是\(O(q(\sqrt n+\sqrt{max\ d}))\)。
代码
#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 100000
#define SN 400
using namespace std;
int n,sn,Qt,a[N+5];
class FastIO
{
private:
#define FS 100000
#define tc() (A==B&&(B=(A=FI)+fread(FI,1,FS,stdin),A==B)?EOF:*A++)
#define pc(c) (C==E&&(clear(),0),*C++=c)
#define tn (x<<3)+(x<<1)
#define D isdigit(c=tc())
int T;char c,*A,*B,*C,*E,FI[FS],FO[FS],S[FS];
public:
I FastIO() {A=B=FI,C=FO,E=FO+FS;}
Tp I void read(Ty& x) {x=0;W(!D);W(x=tn+(c&15),D);}
Tp I void write(Ty x) {W(S[++T]=x%10+48,x/=10);W(T) pc(S[T--]);}
Tp I void writeln(Con Ty& x) {write(x),pc('\n');}
I void clear() {fwrite(FO,1,C-FO,stdout),C=FO;}
}F;
class BoundValueSolver
{
private:
int ans[N+5],t[N+5],s[N+5][SN+5];
struct Query
{
int l,r,d,p,bl;
I bool operator < (Con Query& o) Con {return bl^o.bl?bl<o.bl:(bl&1?r<o.r:r>o.r);}
}q[N+5];
public:
I void Solve()
{
RI i,j,l,r,d,Qn=0;for(sn=sqrt(n),i=1;i<=n;++i) for(j=1;j<=sn;++j) s[i][j]=s[i-1][j]+!(a[i]%j);//预处理
for(i=1;i<=Qt;++i) F.read(l),F.read(r),F.read(d),
d<=sn?ans[i]=s[r][d]-s[l-1][d]:(q[++Qn].l=l,q[Qn].r=r,q[Qn].d=d,q[Qn].p=i,q[Qn].bl=(l-1)/sn+1);//设阈值分别处理
RI L=1,R=0;for(sort(q+1,q+Qn+1),i=1;i<=Qn;++i)//莫队
{
W(R<q[i].r) ++t[a[++R]];W(L>q[i].l) ++t[a[--L]];W(R>q[i].r) --t[a[R--]];W(L<q[i].l) --t[a[L++]];//移动
for(j=q[i].d;j<=N;j+=q[i].d) ans[q[i].p]+=t[j];//询问
}
for(i=1;i<=Qt;++i) F.writeln(ans[i]);//输出答案
}
}S;
int main()
{
freopen("back.in","r",stdin),freopen("back.out","w",stdout);
RI i;for(F.read(n),F.read(Qt),i=1;i<=n;++i) F.read(a[i]);return S.Solve(),F.clear(),0;
}
【2019.8.11上午 慈溪模拟赛 T3】欢迎回来(back)(设阈值+莫队)的更多相关文章
- 【2019.8.11上午 慈溪模拟赛 T2】十七公斤重的文明(seventeen)(奇偶性讨论+动态规划)
题意转化 考虑我们对于集合中每一个\(i\),若\(i-2,i+k\)存在,就向其连边. 那么,一个合法的集合就需要满足,不会存在环. 这样问题转化到了图上,就变得具体了许多,也就更容易考虑.求解了. ...
- 【2019.8.11下午 慈溪模拟赛 T2】数数(gcd)(分块+枚举因数)
莫比乌斯反演 考虑先推式子: \[\sum_{i=l}^r[gcd(a_i,G)=1]\] \[\sum_{i=l}^r\sum_{p|a_i,p|G}\mu(p)\] \[\sum_{p|G}\mu ...
- 【2019.8.6 慈溪模拟赛 T3】集合(set)(线段树上DP)
线段树上\(DP\) 首先发现,每个数肯定是向自己的前驱或后继连边的. 则我们开一棵权值线段树,其中每一个节点记录一个\(f_{0/1,0/1}\),表示在这个区间左.右端点是否连过边的情况下,使这个 ...
- 7.11 NOI模拟赛 qiqi20021026的T1 四个指针莫队 trie树
LINK:qiqi20021026的T1 考场上只拿到了50分的\(nq\)暴力. 考虑一个区间和一个区间配对怎么做 二分图最大带权匹配复杂度太高. 先考虑LCS的问题 常见解决方法是后缀数组/tri ...
- 11/1 NOIP 模拟赛
11.1 NOIP 模拟赛 期望得分:50:实际得分:50: 思路:暴力枚举 + 快速幂 #include <algorithm> #include <cstring> #in ...
- 体育成绩统计——20180801模拟赛T3
体育成绩统计 / Score 题目描述 正所谓“无体育,不清华”.为了更好地督促同学们进行体育锻炼,更加科学地对同学们进行评价,五道口体校的老师们在体育成绩的考核上可谓是煞费苦心.然而每到学期期末时, ...
- 11.7 NOIP模拟赛
目录 2018.11.7 NOIP模拟 A 序列sequence(two pointers) B 锁lock(思路) C 正方形square(埃氏筛) 考试代码 B C 2018.11.7 NOIP模 ...
- 20180520模拟赛T3——chess
[问题描述] 小美很喜欢下象棋. 而且她特别喜欢象棋中的马. 她觉得马的跳跃方式很独特.(以日字格的方式跳跃) 小芳给了小美一张很大的棋盘,这个棋盘是一个无穷的笛卡尔坐标. 一开始\(time=0\) ...
- 2019/11/12 CSP模拟赛&&考前小总结
写在前面的总结 离联赛只有几天了,也马上就要回归文化课了. 有点舍不得,感觉自己的水平刚刚有点起色,却又要被抓回文化课教室了,真想在机房再赖几天啊. 像19/11/11那场的简单题,自己还是能敲出一些 ...
随机推荐
- CF1278B-A and B-(简单数学)
https://vjudge.net/problem/CodeForces-1278B 题意:给两个数a和b,有一种操作:第i次操作任选其中一个数加或减i:如第1次操作可以任选其中一个数加1或减1,第 ...
- python3的ExecJS安装使用
参考官方文档安装 pip3 install PyExecJS 代码编写 import execjs ctx = execjs.compile(""" function a ...
- 并发编程实战之并发下的socket套接字编程
目录 一.python单线程下实现多个socket并发 1.1 服务端 1.2 客户端 一.python单线程下实现多个socket并发 1.1 服务端 import sys # import soc ...
- Python连载48-正则表达式(中)
一.正则的写法: . (点好) :表示任意一个字符,除了\n,比如查找所有的一个字符\. [] :匹配中括号中列举的任意字符,比如[L,Y,0], LLY, Y0, LIU \d :任意一个数字 \D ...
- umi+dva+antd新建项目(亲测可用)
首先全局安装dva+umiumi:npm install -g umidva:npm install -g dva-cli 通过脚手架创建项目 一: mkdir myapp && cd ...
- hyper-v简介及安装使用
前言:作为IT界的巨头,微软自己的虚拟化技术,也是微软第一个采用Vmware与CitrixXen一样基于hypervisor的虚拟化技术,有着自己可圈可点的地方,微软自己的虚拟化技术嘛,对windo ...
- PHPStorm使用PHP7新特性出现红色波浪错误
今天在项目中使用PHP7新特性时PHPStorm出现了如下红色错误,看着让人很不舒服,明明没有错 本地配置LNMP的PHP版本是7.2所以不是安装的PHP版本过低的问题,而是PHPStorm默认支持的 ...
- this泛指函数的上下文
this泛指函数的上下文 当前函数运行的类型上下文.
- 项目中出现多个域名下的Cookie
前言:我们在查看一个项目的Cookie时,有时会看到多个域名下的Cookie,如下图: 其中一种常见的原因是:因为我们在项目中引用了另一个项目的资源.如下图: 重点:浏览器的一种默认机制:如果我们引用 ...
- Java生鲜电商平台-深刻理解电商的库存架构与解决方案
Java生鲜电商平台-深刻理解电商的库存架构与解决方案 说明:一般电商的库存都是跟SKU相关联的,那么怎么样才能进行SKU的库存管理呢?有以下几种方式与方法: 一.七大库存分类 首先得学习什么是库存, ...