吐槽:

只能说这道题很数学,本数学蒟蒻推了半天没推出来,只知道要用绝对值,幸亏教练提醒,才勉强想出正解(似乎不是这样的),真的是很无语。


以上皆为吐槽本题,可直接 跳过

分析:

  • 既然题目是要使书架上的书一样多,那么就一定要求平均数了

    \(s=\sum_{i=1}^n book_i,s=s\div n\),\(s\)即为平均数

  • 继续分析,我们将平均数减掉,得出一个书架需要改变的量\(x_1,x_2,\)···\(x_n\),这时我们发现,我们可以得出一个方程组

    \(\begin{cases}x_1=a_1-a_n\\x_2=a_2-a_1 \\x_3=a_3-a_2\\\cdots\\x_n=a_n-a_{n-1}\end{cases}\)

    $\Longrightarrow $

    \(\begin{cases}a_1=x_1+a_n\\a_2=x_2+a_1 \\a_3=x_3+a_2\\\cdots\\a_n=x_n+a_{n-1}\end{cases}\)

    (其中\(a_i\)(\(i\in N^+\))为SY从\(i\)书架向下一个书架抱\(a_i\)本书)

    我们惊喜的发现,我们得出了这样一个方程组 \(\begin{cases} a_1=x_1+a_n\\ a_2=x_2+x_1+a_n\\ a_3=x_3+x_2+x_1+a_n\\ \cdots\\a_n=x_n+x_{n-1}+\cdots+x_1+a_n\end{cases}\)

  • 得出以上方程之后,继续观察,发现第一问:SY最少抱多少本书,即求\(sum=\sum_{i=1}^n \left | a_i \right |\)的最小值(\(\left | a_i \right |\)表示数\(a_i\)的绝对值)

    得:\(sum= \left |y_1+a_n \right |+\left | y_2+a_n \right |+\left | y_3+a_n \right |+\cdots+\left | y_n+a_n \right |\)

    \(\because n \in E\)(\(E\)表示奇数集)

    \(\therefore\)当\(a_n=y_k\)(其中\(k=\frac{n}{2}+1\))时,\(sum\)有最小值。

    第一问迎刃而解~~~

  • 剩下的便变得简单起来

    因为我们\(a_i\)设的是SY从\(i\)书架抱到到下一个书架的书籍

    所以SY从\(i\)书架抱到到上一个书架的书籍为\(-a_{i-1}\)


部分代码

1.前缀和:

用于求\(y_i\)

for(LL i=1;i<=n;i++)
{
sum[i]=sum[i-1]+book[i]-s; //前缀和标准写法
}

2.中位数:

用于求\(a_n\)

这里有两种方法:

  • 法一:排序+查找(时间代价:总程序32ms)
sort(sum+1,sum+n+1);
LL mid=sum[n/2+1];//中位数
  • 法二:nth_element(c++自带函数库,时间代价:总程序12ms)
nth_element(sum+1,sum+n/2+1,sum+n+1);
LL mid=sum[n/2+1];//更快的中位数求法

综上,nth_element要快很多,我的名字果然牛逼

具体用法:nth_element(头位置,中位数位置,尾位置);


好吧,这道题数学分析很难,但代码确实很简单,比AC自动机,FFT,那些好多了

给你一个假代码(逃

#include<bits/stdc++.h>
#define LL long long
#define Maxn 5000011
#define QwQ 1
#define QAQ 0
using namespace std;
int n;
LL book[Maxn];
LL s=0;
LL sum[Maxn];
LL s2=0;
LL veb[Maxn];
int main()
{
cin>>n;
for(LL i=1;i<=n;i++)
{
scanf("%lld",&book[i]);
s+=book[i];
}
s/=n;//平均数
for(LL i=1;i<=n;i++)
{
sum[i]=sum[i-1]+book[i]-s;
book[i]=sum[i];
}
sort(sum+1,sum+n+1);
LL mid=sum[n/2+1];//中位数
/*
nth_element(sum+1,sum+n/2+1,sum+n+1);
LL mid=sum[n/2+1];更快的中位数求法
*/
for(LL i=1;i<=n;i++)
{
s2+=abs(sum[i]-mid);
veb[i]=book[i]-mid;
}
printf("%lld\n",s2);
printf("%lld %lld\n",-veb[n],veb[1]);
for(LL i=2;i<=n;i++)
{
printf("%lld %lld\n",-veb[i-1],veb[i]);
}
return mid==0?max(QwQ,QAQ):0;
}

洛谷P2125 题解的更多相关文章

  1. [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码

    [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码 更坏的阅读体验 定义 对于给定的一个网络,有向图中每个的边权表示可以通过的最大流量.假设出发点S水流无限大,求水流到终点T后的最大流量. 起 ...

  2. 洛谷P5759题解

    本文摘自本人洛谷博客,原文章地址:https://www.luogu.com.cn/blog/cjtb666anran/solution-p5759 \[这道题重在理解题意 \] 选手编号依次为: \ ...

  3. 关于三目运算符与if语句的效率与洛谷P2704题解

    题目描述 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图.在每一格平原地形上最 ...

  4. c++并查集配合STL MAP的实现(洛谷P2814题解)

    不会并查集的话请将此文与我以前写的并查集一同食用. 原题来自洛谷 原题 文字稿在此: 题目背景 现代的人对于本家族血统越来越感兴趣. 题目描述 给出充足的父子关系,请你编写程序找到某个人的最早的祖先. ...

  5. 洛谷P2607题解

    想要深入学习树形DP,请点击我的博客. 本题的DP模型同 P1352 没有上司的舞会.本题的难点在于如何把基环树DP转化为普通的树上DP. 考虑断边和换根.先找到其中的一个环,在上面随意取两个点, 断 ...

  6. 洛谷P2125图书馆书架上的书 题解报告

    题目描述 图书馆有n个书架,第1个书架后面是第2个书架,第2个书架后面是第3个书架……第n-1个书架后面是第n个书架,第n个书架后面是第1个书架,第i个书架上有b[i]本书.现在,为了让图书馆更美观, ...

  7. 【洛谷】题解 P1056 【排座椅】

    题目链接 因为题目说输入保证会交头接耳的同学前后相邻或者左右相邻,所以一对同学要分开有且只有一条唯一的通道才能把他们分开. 于是可以吧这条通道累加到一个数组里面.应为题目要求纵列的通道和横列的通道条数 ...

  8. 洛谷P3572题解

    这道题实在是一道 毒瘤 题,太坑爹了.那个写 \(deque\) 的题解亲测只有80分,原因 不言而明 ,这道题居然 丧心病狂 到 卡STL . 好了,不吐槽了,进入正题 题目分析: 这是一道十分 简 ...

  9. [洛谷P1972][题解][SDOI2009]HH的项链

    别碰我! 自己还是太蒟了…… 看了好久,最后抄参考题解打出来的…… 前面的可能影响后面的,所以按照询问右端点排序 这时候维护一个前缀和数组就可以了, 那么问题又来了,去重? 可以这样,从前往后枚举,如 ...

随机推荐

  1. 网络虚拟化基础协议·Geneve

    [分层] 要实现网络虚拟化,最基础的技术肯定是分层(OverLay & UnderLay). ·UnderLay 中文释义中,老房子漏雨,在房子里面撑一把大雨伞,这把大雨伞就是UnderLay ...

  2. React躬行记(7)——表单

    表单元素是一类拥有内部状态的元素,这些状态由其自身维护,通过这类元素可让用户与Web应用进行交互.HTML中的表单元素(例如<input>.<select>和<radio ...

  3. Docker学习第一天

    1.Docker包含三个基本概念 镜像(Image) 容器(Container) 仓库(Repository) Docker镜像就是一个只读的模板,镜像可以用来创建Docker容器.Docker提供了 ...

  4. NET多线程之进程间同步锁Mutex

    Mutex类似于lock.Monitor,都是为了解决多线程环境下,资源竞争导致的访问顺序问题.常见资源竞争有以下情况: 1.单例,如何确保单例: 2.IO文件操作,如果同时又多个线程访问同一个文件会 ...

  5. Java编程思想:构建复杂模型

    import sun.nio.cs.Surrogate; import java.util.ArrayList; import java.util.Random; public class Test ...

  6. CF356E - Xenia and String Problem

    也许更好的阅读体验 \(\mathcal{Description}\) 定义一种字符串\(gray\)串满足: 长度为奇数 正中间的字母只出现一次 左右两端相同,左右两端也是gray串 一个\(gra ...

  7. VUE动态(自动)Loading【绑定到URL】,同页面多个Loading互不冲突

    需求来源:当使用React时,使用 umi loading 很方便,页面对http请求发生改变时,也会自动改变loading的相关状态(true/false) 对VUE插件进行找寻,发现没找到合适内容 ...

  8. Scala数据结构

    Scala数据结构 主要的集合特质 Scala同时支持可变集合和不可变集合,优先采用不可变集合.集合主要分为三大类:序列(List),集(set),映射(map).所有的集合都扩展自Iterable特 ...

  9. [小米OJ] 10. 爬楼梯

    dp 另: 小米oj上的测试样例是错的 ; ) function solution(line) { if (line == 0) return 0; if (line == 1) return 1; ...

  10. ubuntu16.04服务器上无root权限,配置个人tensorflow环境--cuda9.0+cuDNN7+tensorflow-gpu-1.8

    本人在服务器上已经用Anconda创建好python3.5的环境,这个网上有一大堆教程.接下来是重点. 1. cuda的安装 https://developer.nvidia.com/cuda-dow ...