Elasticsearch系列---并发控制及乐观锁实现原理
概要
本篇主要介绍一下Elasticsearch的并发控制和乐观锁的实现原理,列举常见的电商场景,关系型数据库的并发控制、ES的并发控制实践。
并发场景
不论是关系型数据库的应用,还是使用Elasticsearch做搜索加速的场景,只要有数据更新,并发控制是永恒的话题。
当我们使用ES更新document的时候,先读取原始文档,做修改,然后把document重新索引,如果有多人同时在做相同的操作,不做并发控制的话,就极有可能会发生修改丢失的。可能有些场景,丢失一两条数据不要紧(比如文章阅读数量统计,评论数量统计),但有些场景对数据严谨性要求极高,丢失一条可能会导致很严重的生产问题,比如电商系统中商品的库存数量,丢失一次更新,可能会导致超卖的现象。
我们还是以电商系统的下单环节举例,某商品库存100个,两个用户下单购买,都包含这件商品,常规下单扣库存的实现步骤
- 客户端完成订单数据校验,准备执行下单事务。
- 客户端从ES中获取商品的库存数量。
- 客户端提交订单事务,并将库存数量扣减。
- 客户端将更新后的库存数量写回到ES。
示例流程图如下:
如果没有并发控制,这件商品的库存就会更新成99(实际正确的值是98),这样就会导致超卖现象。假定http-1比http-2先一步执行,出现这个问题的原因是http-2在获取库存数据时,http-1还未完成下单扣减库存后,更新到ES的环节,导致http-2获取的数据已经是过期数据,后续的更新肯定也是错的。
上述的场景,如果更新操作越是频繁,并发数越多,读取到更新这一段的耗时越长,数据出错的概率就越大。
常用的锁方案
并发控制尤为重要,有两种通用的方案可以确保数据在并发更新时的正确性。
悲观并发控制
悲观锁的含义:我认为每次更新都有冲突的可能,并发更新这种操作特别不靠谱,我只相信只有严格按我定义的粒度进行串行更新,才是最安全的,一个线程更新时,其他的线程等着,前一个线程更新完成后,下一个线程再上。
关系型数据库中广泛使用该方案,常见的表锁、行锁、读锁、写锁,依赖redis或memcache等实现的分布式锁,都属于悲观锁的范畴。明显的特征是后续的线程会被挂起等待,性能一般来说比较低,不过自行实现的分布式锁,粒度可以自行控制(按行记录、按客户、按业务类型等),在数据正确性与并发性能方面也能找到很好的折衷点。
乐观并发控制
乐观锁的含义:我认为冲突不经常发生,我想提高并发的性能,如果真有冲突,被冲突的线程重新再尝试几次就好了。
在使用关系型数据库的应用,也经常会自行实现乐观锁的方案,有性能优势,方案实现也不难,还是挺吸引人的。
Elasticsearch默认使用的是乐观锁方案,前面介绍的_version字段,记录的就是每次更新的版本号,只有拿到最新版本号的更新操作,才能更新成功,其他拿到过期数据的更新失败,由客户端程序决定失败后的处理方案,一般是重试。
ES的乐观锁方案
我们还是以上面的案例为背景,若http-2向ES提交更新数据时,ES会判断提交过来的版本号与当前document版本号,document版本号单调递增,如果提交过来的版本号比document版本号小,则说明是过期数据,更新请求将提示错误,过程图如下:
使用内置_version实战乐观锁控制效果
我们在kibana平台上模拟两个线程修改同一条document数据,打开两个浏览器标签即可,我们使用原有的案例数据:
{
"_index": "music",
"_type": "children",
"_id": "2",
"_version": 2,
"found": true,
"_source": {
"name": "wake me, shark me",
"content": "don't let me sleep too late, gonna get up brightly early in the morning",
"language": "english",
"length": "55"
}
}
当前的version是2,我们使用一个浏览器标签页,发出更新请求,把当前的version带上:
POST /music/children/2?version=2
{
"doc": {
"length": 56
}
}
此时更新成功
{
"_index": "music",
"_type": "children",
"_id": "2",
"_version": 3,
"result": "updated",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 2,
"_primary_term": 2
}
同时我们在另一个标签页上,也使用version=2进行更新,得到的错误结果如下:
{
"error": {
"root_cause": [
{
"type": "version_conflict_engine_exception",
"reason": "[children][2]: version conflict, current version [3] is different than the one provided [2]",
"index_uuid": "9759yb44TFuJSejo6boy4A",
"shard": "2",
"index": "music"
}
],
"type": "version_conflict_engine_exception",
"reason": "[children][2]: version conflict, current version [3] is different than the one provided [2]",
"index_uuid": "9759yb44TFuJSejo6boy4A",
"shard": "2",
"index": "music"
},
"status": 409
}
关键错误信息:version_conflict_engine_exception,版本冲突,将version升到3,模拟失败后重试,此时更新成功。
真实的场景,重试的次数跟线程并发数有关,线程越多,更新越频繁,就可能需要重试多次才可能更新成功。
使用外部_version实战乐观锁控制效果
ES允许不使用内置的version进行版本控制,可以自定义使用外部的version,例如常见的使用Elasticsearch做数据查询加速的经典方案,关系型数据库作为主数据库,然后使用Elasticsearch做搜索数据,主数据会同步数据到Elasticsearch中,而主数据库并发控制,本身就是使用的乐观锁机制,有自己的一套version生成机制,数据同步到ES那里时,直接使用更方便。
请求语法上加上version_type参数即可:
POST /music/children/2?version=2&version_type=external
{
"doc": {
"length": 56
}
}
唯一的区别
- 内置_version,只有当你提供的version与es中的_version完全一样的时候,才可以进行更新,否则报错;
- 外部_version,只有当你提供的version比es中的_version大的时候,才能完成修改。
Replica Shard数据同步并发控制
在Elasticsearch内部,每当primary shard收到新的数据时,都需要向replica shard进行数据同步,这种同步请求特别多,并且是异步的。如果同一个document进行了多次修改,Shard同步的请求是无序的,可能会出现"后发先至"的情况,如果没有任何的并发控制机制,那结果将无法相像。
Shard的数据同步也是基于内置的_version进行乐观锁并发控制的。
例如Java客户端向Elasticsearch某条document发起更新请求,共发出3次,Java端有严谨的并发请求控制,在ElasticSearch的primary shard中写入的结果是正确的,但Elasticsearch内部数据启动同步时,顺序不能保证都是先到先得,情况可能是这样,第三次更新请求比第二次更新请求先到,如下图:
如果Elasticsearch内部没有并发的控制,这个document在replica的结果可能是text2,并且与primary shard的值不一致,这样肯定错了。
预期的更新顺序应该是text1-->text2-->text3,最终的正确结果是text3。那Elasticsearch内部是如何做的呢?
Elasticsearch内部在更新document时,会比较一下version,如果请求的version与document的version相等,就做更新,如果document的version已经大于请求的version,说明此数据已经被后到的线程更新过了,此时会丢弃当前的请求,最终的结果为text3。
此时的更新顺序为text1-->text3,最终结果也是对的。
小结
本篇主要介绍并发场景出现数据错乱的原因,Elasticsearch乐观锁的实原理,以及ES内部数据同步时的并发控制,有不正确之处或未详尽之处请知会修改,谢谢。
专注Java高并发、分布式架构,更多技术干货分享与心得,请关注公众号:Java架构社区
Elasticsearch系列---并发控制及乐观锁实现原理的更多相关文章
- 谈谈MySQL支持的事务隔离级别,以及悲观锁和乐观锁的原理和应用场景?
在日常开发中,尤其是业务开发,少不了利用 Java 对数据库进行基本的增删改查等数据操作,这也是 Java 工程师的必备技能之一.做好数据操作,不仅仅需要对 Java 语言相关框架的掌握,更需要对各种 ...
- 第36讲 谈谈MySQL支持的事务隔离级别,以及悲观锁和乐观锁的原理和应用场景
在日常开发中,尤其是业务开发,少不了利用 Java 对数据库进行基本的增删改查等数据操作,这也是 Java 工程师的必备技能之一.做好数据操作,不仅仅需要对 Java 语言相关框架的掌握,更需要对各种 ...
- MP实战系列(十七)之乐观锁插件
声明,目前只是仅仅针对3.0以下版本,2.0以上版本. 意图: 当要更新一条记录的时候,希望这条记录没有被别人更新 乐观锁实现方式: 取出记录时,获取当前version 更新时,带上这个version ...
- php并发控制 , 乐观锁
由于悲观锁在开始读取时即开始锁定,因此在并发访问较大的情况下性能会变差.对MySQL Inodb来说,通过指定明确主键方式查找数据会单行锁定,而查询范围操作或者非主键操作将会锁表. 接下来,我们看一下 ...
- Java面试题系列(七)锁的原理
redis实现分布式锁 synchronized 和 reentrantlock的区别,偏向锁/轻量级锁/重量级锁的原理,能否从偏向锁直接升级成重量级锁
- Elasticsearch 基于external的乐观锁的版本控制
version_type=external,唯一的区别在于,_version,只有当你提供的version与es中的_version一模一样的时候,才可以进行修改,只要不一样,就报错:当version ...
- Elasticsearch由浅入深(四)ES并发冲突、悲观锁与乐观锁、_version乐观锁并发
ES并发冲突 举个例子,比如是电商场景下,假设说,我们有个程序,工作的流程是这样子的: 读取商品信息(包含了商品库存) 用户下单购买 更新商品信息(主要是将库存减1) 我们比如咱们的程序就是多线程的, ...
- mybatis 如何使用乐观锁
悲观锁的问题: 因为悲观锁大多数情况下依靠数据库的锁机制实现,以保证操作最大程度的独占性.如果加锁的时间过长,其他用户长时间无法访问,影响了程序的并发访问性,同时这样对数据库性能开销影响也很大,特别是 ...
- 已实现乐观锁功能,FreeSql.DbContext 准备起航
上回说到 FreeSql.DbContext 的规则,以及演示它的执行过程,可惜当时还不支持"乐观锁",对于更新数据来讲并不安全. FreeSql 核心库 v0.3.27 已提供乐 ...
随机推荐
- 服务器配置:ECS+Nginx+uWSGI+Flask——各部分详细介绍
希望在阿里云ECS上搭建一个flask框架的web应用,经典的形式便是flask+uWSGI+nginx模式 服务器:CentOS 7.3 python版本:3.8.0 先贴一张全局图,这张图很清楚的 ...
- python新式类继承------C3算法
一.引入 mro即method resolution order,主要用于在多继承时判断调的属性的路径(来自于哪个类).之前查看了很多资料,说mro是基于深度优先搜索算法的.但不完全正确在Python ...
- 11 一步一步Zabbix4.4.0系统教你实现sendEmail邮件报警
点击返回:自学Zabbix之路 点击返回:自学Zabbix4.0之路 点击返回:自学zabbix集锦 一步一步Zabbix4.4.0系统教你实现sendEmail邮件报警 sendEmail是一个轻量 ...
- 纯HTML+JS实现轮播
<!DOCTYPE html> <html lang="en" xmlns="http://www.w3.org/1999/xhtml"> ...
- 获得shell的几种姿势
windows提权 1.通过sqlmap连接mysql获取shell (1)直接连接数据库 sqlmap.py -d "mysql://root:123456@127.0.0.1:3306/ ...
- commix工具配合命令注入
commix简介 commix是一款由python编写,开源自动化检测系统命令注入工具 https://github.com/commixproject/commix commix 参数 选项: - ...
- 手机信号G、E、O、3G代表什么意思?
G指GPRS,是2.5G网络,属于GSM网络,也就是说这项技术位于第二代(2G)和第三代(3G)移动通讯技术之间,GPRS的传输速率可提升至56甚至114Kbps,已经将2017年确定为关闭GSM网络 ...
- Jmeter与压测相关概念
相关概念 RT(response time) 什么是RT? RT就是指系统在接收到请求和做出相应这段时间跨度 但是值得一提的是RT的值越高,并不真的就能说明我们的系统的吞吐量就很高, 比如说,如果存在 ...
- Eclipse中修改tomcat的部署路径deploypath
在eclipse上面部署web项目后,它没有将你的项目文件放到tomcat 的目录下面.而是放在了你的工作目录下面. 在tomcat上右键选择“stop” .停止eclipse内的Tomcat服务器 ...
- Kubernetes概述
1. Kubernetes是什么 Kubernetes是一个可移植的.可扩展的.用于管理容器化工作负载和服务的开源平台,它简化(促进)了声明式配置和自动化.它有一个庞大的.快速增长的生态系统.Kube ...