Kafka 学习笔记之 Kafka0.11之producer/consumer(Scala)
Kafka0.11之producer/consumer(Scala):
KafkaConsumer:
import java.util.Properties
import org.apache.kafka.clients.consumer.KafkaConsumer
import kafka.consumer.ConsumerConfig
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.clients.consumer.ConsumerRecords object KafkaConsumer {
def main(args: Array[String]): Unit = {
var groupid = "ScalaGroup"
var consumerid = "ScalaConsumer"
var topic = "ScalaTopic" //args match {
// case Array(arg1, arg2, arg3) => topic = arg1; groupid = arg2; consumerid = arg3
//} val props = new Properties()
props.put("bootstrap.servers", "192.168.1.151:9092,192.168.1.152:9092,192.168.1.153:9092")
props.put("group.id", groupid)
props.put("client.id", "test")
props.put("consumer.id", consumerid)
// props.put("auto.offset.reset", "smallest")
props.put("enable.auto.commit", "true")
props.put("auto.commit.interval.ms", "100")
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer") val consumer = new KafkaConsumer[String, String](props)
consumer.subscribe(java.util.Arrays.asList(topic)) while (true) {
val records = consumer.poll(100)
for (record <- records) {
println(s"Topic = ${record.topic()}, partition = ${record.partition()}, key = ${record.key()}, value = ${record.value()}")
}
} }
}
KafkaProducer:
import java.util.Properties
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord} object KafkaProducer {
def main(args: Array[String]): Unit = { val brokers = "192.168.1.151:9092,192.168.1.152:9092,192.168.1.153:9092"
// val brokers = "192.168.1.151:9092"
val topic = "ScalaTopic"; val props = new Properties()
props.put("bootstrap.servers", brokers)
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer")
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer")
props.put("partitioner.class", classOf[HashPartitioner].getName)
props.put("producer.type", "sync")
props.put("batch.size", "1")
props.put("acks", "all") val producer = new KafkaProducer[String, String](props); val sleepFlag = false;
val message1 = new ProducerRecord[String, String](topic, "1", "test 1aa");
producer.send(message1);
if (sleepFlag) Thread.sleep(5000);
val message2 = new ProducerRecord[String, String](topic, "1", "test 1bb");
producer.send(message2);
if (sleepFlag) Thread.sleep(5000);
val message3 = new ProducerRecord[String, String](topic, "1", "test 1cc");
producer.send(message3);
if (sleepFlag) Thread.sleep(5000);
val message4 = new ProducerRecord[String, String](topic, "4", "test 4dd");
producer.send(message4);
if (sleepFlag) Thread.sleep(5000);
val message5 = new ProducerRecord[String, String](topic, "4", "test 4aa");
producer.send(message5);
if (sleepFlag) Thread.sleep(5000);
val message6 = new ProducerRecord[String, String](topic, "3", "test 3bb");
producer.send(message6);
if (sleepFlag) Thread.sleep(5000);
val message7 = new ProducerRecord[String, String](topic, "2", "test 2bb");
producer.send(message7);
if (sleepFlag) Thread.sleep(5000);
producer.close()
}
}
HashPartitioner:
import java.util import scala.math._
import kafka.utils.VerifiableProperties
import org.apache.kafka.clients.producer.Partitioner
import org.apache.kafka.common.Cluster class HashPartitioner extends Partitioner {
def this(verifiableProperties: VerifiableProperties) { this } override def partition(topic: String, key: scala.Any, keyBytes: Array[Byte], value: scala.Any, valueBytes: Array[Byte], cluster: Cluster) = {
val partitionInfo = cluster.partitionsForTopic(topic)
val numPartitions = partitionInfo.size() if (key.isInstanceOf[Int]) {
abs(key.toString().toInt) % numPartitions
} key.hashCode() % numPartitions } override def close() = { } override def configure(configs: util.Map[String, _]) = { }
}
Kafka 学习笔记之 Kafka0.11之producer/consumer(Scala)的更多相关文章
- Kafka 学习笔记之 Kafka0.11之console-producer/console-consumer
Kafka 学习笔记之 Kafka0.11之console-producer/console-consumer: 启动Zookeeper 启动Kafka0.11 创建一个新的Topic: ./kafk ...
- 大数据 -- kafka学习笔记:知识点整理(部分转载)
一 为什么需要消息系统 1.解耦 允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束. 2.冗余 消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险.许多 ...
- kafka学习笔记(一)消息队列和kafka入门
概述 学习和使用kafka不知不觉已经将近5年了,觉得应该总结整理一下之前的知识更好,所以决定写一系列kafka学习笔记,在总结的基础上希望自己的知识更上一层楼.写的不对的地方请大家不吝指正,感激万分 ...
- RocketMQ学习笔记(13)----RocketMQ的Consumer消息重试
1. 概念 Producer端重试: 生产者端的消息失败,也就是Producer往MQ上发消息没有发送成功,比如网络抖动导致生产者发送消息到MQ失败. 这种消息失败重试我们可以手动设置发送失败重试的次 ...
- kafka学习笔记:知识点整理
一.为什么需要消息系统 1.解耦: 允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束. 2.冗余: 消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险. ...
- [Big Data - Kafka] kafka学习笔记:知识点整理
一.为什么需要消息系统 1.解耦: 允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束. 2.冗余: 消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险. ...
- kafka 学习笔记
一.为什么需要消息系统 1.解耦: 允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束. 2.冗余: 消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险. ...
- 【大数据】Kafka学习笔记
第1章 Kafka概述 1.1 消息队列 (1)点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除) 点对点模型通常是一个基于拉取或者轮询的消息传送模型,这种模型从队列中请求信息,而不是将消息 ...
- kafka学习笔记(三)kafka的使用技巧
概述 上一篇随笔主要介绍了kafka的基本使用包括集群参数,生产者基本使用,consumer基本使用,现在来介绍一下kafka的使用技巧. 分区机制 我们在使用 Apache Kafka 生产和消费消 ...
随机推荐
- ccpc网赛 hdu6703 array(权值线段树
http://acm.hdu.edu.cn/showproblem.php?pid=6703 大意:给一个n个元素的数组,其中所有元素都是不重复的[1,n]. 两种操作: 将pos位置元素+1e7 查 ...
- Count on a tree 树上区间第K小
Count on a tree 题意:求路径 u到v上的 第k小的权重. 题解:先DFS建数, 然后对于每个节点往上跑出一颗主席树, 然后每次更新. 查询的时候, u, v, k, 找到 z = l ...
- Codeforces Round #483 (Div. 2) B. Minesweeper
题目地址:http://codeforces.com/contest/984/problem/B 题目大意:扫雷游戏,给你一个n*m的地图,如果有炸弹,旁边的八个位置都会+1,问这幅图是不是正确的. ...
- NOIP 2016 组合数问题 题解
一道sb题目,注意范围,可打表解决,打出杨辉三角,在用前缀和求解即可 代码(一维前缀和) #include<bits/stdc++.h> using namespace std; int ...
- ASP.NET CORE Docker发布记录
1.安装Docker yum install curl -y curl -fsSL https://get.docker.com/ | sh 2.编写Dockerfile文件 FROM microso ...
- Nginx简介及配置文件详解
http://blog.csdn.net/hzsunshine/article/details/63687054 一 Nginx简介 Nginx是一款开源代码的高性能HTTP服务器和反向代理服务 ...
- Python作业本——前言
大四毕业了,9月才开始研究生生涯,导师也没有严格要求我暑假留校做项目,也没提具体的学习要求.这两三个月比较闲,所以就打算学学Python.学习过程中肯定会有些心得体会,以及一些小练习.学习编程不同于传 ...
- 每天学会一点点(HashMap实现原理及源码分析)
HashMap实现原理及源码分析 哈希表(hash table)也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希 ...
- AtomicInteger 一个提供原子操作的Integer类
转自:http://www.blogjava.net/freeman1984/archive/2011/10/17/361402.html AtomicInteger,一个提供原子操作的Integer ...
- git之rebase、merge和cherry pick的区别(面试常问)
git flow图例镇楼 merge 这个简单,初学者常用.比如主分支是Dev,最新版本是01.然后小明基于此,搞了个feature 分支A,业务:打酱油.然后在上面多次提交,完成功能迭代开发,如A1 ...