红黑树之 原理和算法详细介绍(阿里面试-treemap使用了红黑树) 红黑树的时间复杂度是O(lgn) 高度<=2log(n+1)1、X节点左旋-将X右边的子节点变成 父节点 2、X节点右旋-将X左边的子节点变成父节点
红黑树插入删除 具体参考:红黑树原理以及插入、删除算法 附图例说明 (阿里的高德一直追着问)
或者插入的情况参考:红黑树原理以及插入、删除算法 附图例说明
红黑树与AVL树 红黑树 的时间复杂度 O(logn) TreeMap TreeSet本身就是一个红黑树的实现。
“红黑树”,它一种特殊的二叉查找树。红黑树的每个节点上都有存储位表示节点的颜色,可以是红(Red)或黑(Black)。
红黑树的时间复杂度为: O(lgn)
(1) 一棵含有n个节点的红黑树的高度至多为2log(n+1)
(2) 左旋:自己成为左子节点,将“x的右孩子”设为“x的父亲节点”;
(3)右旋:自己成为右子节点,将“x的左孩子”设为“x的父亲节点”;
红黑树能够以O(log n) 的时间复杂度进行搜索、插入、删除操作。此外,由于它的设计,任何不平衡都会在三次旋转之内解决。
(4)红黑树的特性:(阿里-很重要)
(1)每个节点或者是黑色,或者是红色。
(2)根节点是黑色。
(3)每个叶子节点(NIL)是黑色。 [注意:这里叶子节点,是指为空(NIL或NULL)的叶子节点!]
(4)如果一个节点是红色的,则它的子节点必须是黑色的。
(5)从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点。
1 排序二叉树
二叉排序树,又叫二叉查找树,它或者是一棵空树;或者是具有以下性质的二叉树:
1. 若它的左子树不空,则左子树上所有节点的值均小于它的根节点的值;
2. 若它的右子树不空,则右子树上所有节点的值均大于它的根节点的值;
3. 它的左右子树也分别为二叉排序树。
对排序二叉树,若按中序遍历就可以得到由小到大的有序序列。
比如A:根节点、B:左节点、C:右节点,前序顺序是ABC(根节点排最先,然后同级先左后右);中序顺序是BAC(先左后根最后右);后序顺序是BCA(先左后右最后根)。
排序二叉树虽然可以快速检索,但在最坏的情况下:如果插入的节点集本身就是有序的,要么是由小到大排列,要么是由大到小排列,那么最后得到的排序二叉树将变成链表:所有节点只有左节点(如果插入节点集本身是大到小排列);或所有节点只有右节点(如果插入节点集本身是小到大排列)。在这种情况下,排序二叉树就变成了普通链表,其检索效率就会很差。
2 AVL树-自平衡二叉查找树
2 红黑树
一棵拥有n个内部结点的红黑树的树高h<=2log(n+1)
数据项只能存储在内部结点中(internal node)。我们所指的"叶结点"在其父结点中可能仅仅用一个NULL指针表示,但是将它也看作一个实际的结点有助于描述红黑树的插入与删除算法,叶结点一律为黑色。 定义详解:
根据性质 5:红黑树从根节点到每个叶子节点的路径都包含相同数量的黑色节点,因此从根节点到叶子节点的路径中包含的黑色节点数被称为树的“黑色高度(black-height)”。
性质 4 则保证了从根节点到叶子节点的最长路径的长度不会超过任何其他路径的两倍。假如有一棵黑色高度为 3 的红黑树:从根节点到叶节点的最短路径长度是 2,该路径上全是黑色节点(黑节点 – 黑节点 – 黑节点)。最长路径也只可能为 4,在每个黑色节点之间插入一个红色节点(黑节点 – 红节点 – 黑节点 – 红节点 – 黑节点),性质 4 保证绝不可能插入更多的红色节点。由此可见,红黑树中最长路径就是一条红黑交替的路径。
根据定义我们做如下练习: -不符合定义的一颗非红黑树: 红黑树的这5个性质中,第3点是比较难理解的,但它却非常有必要。我们看图1中的左边这张图,如果不使用黑哨兵,它完全满足红黑树性质,结点50到两个叶结点8和叶结点82路径上的黑色结点数都为2个。但如果加入黑哨兵后(如图1右图中的小黑圆点),叶结点的个数变为8个黑哨兵,根结点50到这8个叶结点路径上的黑高度就不一样了,所以它并不是一棵红黑树。 -两颗正确的红黑树: 定理:
由此我们可以得出结论:对于给定的黑色高度为 N 的红黑树,从根到叶子节点的最短路径长度为 N-1,最长路径长度为 2 * (N-1)。 提示:排序二叉树的深度直接影响了检索的性能,正如前面指出,当插入节点本身就是由小到大排列时,排序二叉树将变成一个链表,这种排序二叉树的检索性能最低:N 个节点的二叉树深度就是 N-1。 红黑树通过上面这种限制来保证它大致是平衡的——因为红黑树的高度不会无限增高,这样保证红黑树在最坏情况下都是高效的,不会出现普通排序二叉树的情况。 由于红黑树只是一个特殊的排序二叉树,因此对红黑树上的只读操作与普通排序二叉树上的只读操作完全相同,只是红黑树保持了大致平衡,因此检索性能比排序二叉树要好很多。 但在红黑树上进行插入操作和删除操作会导致树不再符合红黑树的特征,因此插入操作和删除操作都需要进行一定的维护,以保证插入节点、删除节点后的树依然是红黑树。
3 红黑树和AVL(自平衡二叉查找树)树的比较
红黑树示意图如下:
注意:
(01) 特性(3)中的叶子节点,是只为空(NIL或null)的节点。
(02) 特性(5),确保没有一条路径会比其他路径长出俩倍。因而,红黑树是相对是接近平衡的二叉树。
红黑树的基本操作(一) 左旋和右旋(阿里面试)
红黑树的基本操作是添加、删除。在对红黑树进行添加或删除之后,都会用到旋转方法。为什么呢?道理很简单,添加或删除红黑树中的节点之后,红黑树就发生了变化,可能不满足红黑树的5条性质,也就不再是一颗红黑树了,而是一颗普通的树。而通过旋转,可以使这颗树重新成为红黑树。简单点说,旋转的目的是让树保持红黑树的特性。
旋转包括两种:左旋 和 右旋。下面分别对它们进行介绍。
1. 左旋
对x进行左旋,意味着"将x变成一个左节点"。
理解左旋之后,看看下面一个更鲜明的例子。你可以先不看右边的结果,自己尝试一下。
2. 右旋
对x进行左旋,意味着"将x变成一个左节点"。
理解右旋之后,看看下面一个更鲜明的例子。你可以先不看右边的结果,自己尝试一下。
旋转总结:
(01) 左旋 和 右旋 是相对的两个概念,原理类似。理解一个也就理解了另一个。
(02) 下面谈谈如何区分 左旋 和 右旋。
在实际应用中,若没有彻底理解 左旋 和 右旋,可能会将它们混淆。下面谈谈我对如何区分 左旋 和 右旋 的理解。
3. 区分 左旋 和 右旋
仔细观察上面"左旋"和"右旋"的示意图。我们能清晰的发现,它们是对称的。无论是左旋还是右旋,被旋转的树,在旋转前是二叉查找树,并且旋转之后仍然是一颗二叉查找树。
左旋示例图(以x为节点进行左旋):
z
x /
/ \ --(左旋)--> x
y z /
y
对x进行左旋,意味着,将“x的右孩子”设为“x的父亲节点”;即,将 x变成了一个左节点(x成了为z的左孩子)!。 因此,左旋中的“左”,意味着“被旋转的节点将变成一个左节点”。
右旋示例图(以x为节点进行右旋):
y
x \
/ \ --(右旋)--> x
y z \
z
对x进行右旋,意味着,将“x的左孩子”设为“x的父亲节点”;即,将 x变成了一个右节点(x成了为y的右孩子)! 因此,右旋中的“右”,意味着“被旋转的节点将变成一个右节点”。
红黑树的基本操作(二) 添加
将一个节点插入到红黑树中,需要执行哪些步骤呢?首先,将红黑树当作一颗二叉查找树,将节点插入;然后,将节点着色为红色;最后,通过旋转和重新着色等方法来修正该树,使之重新成为一颗红黑树。详细描述如下:
第一步: 将红黑树当作一颗二叉查找树,将节点插入。(树的键值仍然是有序的)
红黑树本身就是一颗二叉查找树,将节点插入后,该树仍然是一颗二叉查找树。也就意味着,树的键值仍然是有序的。此外,无论是左旋还是右旋,若旋转之前这棵树是二叉查找树,旋转之后它一定还是二叉查找树。这也就意味着,任何的旋转和重新着色操作,都不会改变它仍然是一颗二叉查找树的事实。
好吧?那接下来,我们就来想方设法的旋转以及重新着色,使这颗树重新成为红黑树!
第二步:将插入的节点着色为"红色"。
为什么着色成红色,而不是黑色呢?为什么呢?在回答之前,我们需要重新温习一下红黑树的特性:
(1) 每个节点或者是黑色,或者是红色。
(2) 根节点是黑色。
(3) 每个叶子节点是黑色。 [注意:这里叶子节点,是指为空的叶子节点!]
(4) 如果一个节点是红色的,则它的子节点必须是黑色的。
(5) 从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点。
将插入的节点着色为红色,不会违背"特性(5)"!少违背一条特性,就意味着我们需要处理的情况越少。接下来,就要努力的让这棵树满足其它性质即可;满足了的话,它就又是一颗红黑树了。o(∩∩)o...哈哈
第三步: 通过一系列的旋转或着色等操作,使之重新成为一颗红黑树。
第二步中,将插入节点着色为"红色"之后,不会违背"特性(5)"。那它到底会违背哪些特性呢?
对于"特性(1)",显然不会违背了。因为我们已经将它涂成红色了。
对于"特性(2)",显然也不会违背。在第一步中,我们是将红黑树当作二叉查找树,然后执行的插入操作。而根据二叉查找数的特点,插入操作不会改变根节点。所以,根节点仍然是黑色。
对于"特性(3)",显然不会违背了。这里的叶子节点是指的空叶子节点,插入非空节点并不会对它们造成影响。
对于"特性(4)",是有可能违背的!
那接下来,想办法使之"满足特性(4)",就可以将树重新构造成红黑树了。
下面看看代码到底是怎样实现这三步的。
根据被插入节点的父节点的情况,可以将"当节点z被着色为红色节点,并插入二叉树"划分为三种情况来处理。
① 情况说明:被插入的节点是根节点。
处理方法:直接把此节点涂为黑色。
② 情况说明:被插入的节点的父节点是黑色。
处理方法:什么也不需要做。节点被插入后,仍然是红黑树。
③ 情况说明:被插入的节点的父节点是红色。
处理方法:那么,该情况与红黑树的“特性(5)”相冲突。这种情况下,被插入节点是一定存在非空祖父节点的;进一步的讲,被插入节点也一定存在叔叔节点(即使叔叔节点为空,我们也视之为存在,空节点本身就是黑色节点)。理解这点之后,我们依据"叔叔节点的情况",将这种情况进一步划分为3种情况(Case)。
现象说明 | 处理策略 | |
Case 1 | 当前节点的父节点是红色,且当前节点的祖父节点的另一个子节点(叔叔节点)也是红色。 |
(01) 将“父节点”设为黑色。 |
Case 2 | 当前节点的父节点是红色,叔叔节点是黑色,且当前节点是其父节点的右孩子 |
(01) 将“父节点”作为“新的当前节点”。 |
Case 3 | 当前节点的父节点是红色,叔叔节点是黑色,且当前节点是其父节点的左孩子 |
(01) 将“父节点”设为“黑色”。 |
上面三种情况(Case)处理问题的核心思路都是:将红色的节点移到根节点;然后,将根节点设为黑色。下面对它们详细进行介绍。
1. (Case 1)叔叔是红色
1.1 现象说明
当前节点(即,被插入节点)的父节点是红色,且当前节点的祖父节点的另一个子节点(叔叔节点)也是红色。
1.2 处理策略
(01) 将“父节点”设为黑色。
(02) 将“叔叔节点”设为黑色。
(03) 将“祖父节点”设为“红色”。
(04) 将“祖父节点”设为“当前节点”(红色节点);即,之后继续对“当前节点”进行操作。
下面谈谈为什么要这样处理。(建议理解的时候,通过下面的图进行对比)
“当前节点”和“父节点”都是红色,违背“特性(4)”。所以,将“父节点”设置“黑色”以解决这个问题。
但是,将“父节点”由“红色”变成“黑色”之后,违背了“特性(5)”:因为,包含“父节点”的分支的黑色节点的总数增加了1。 解决这个问题的办法是:将“祖父节点”由“黑色”变成红色,同时,将“叔叔节点”由“红色”变成“黑色”。关于这里,说明几点:第一,为什么“祖父节点”之前是黑色?这个应该很容易想明白,因为在变换操作之前,该树是红黑树,“父节点”是红色,那么“祖父节点”一定是黑色。 第二,为什么将“祖父节点”由“黑色”变成红色,同时,将“叔叔节点”由“红色”变成“黑色”;能解决“包含‘父节点’的分支的黑色节点的总数增加了1”的问题。这个道理也很简单。“包含‘父节点’的分支的黑色节点的总数增加了1” 同时也意味着 “包含‘祖父节点’的分支的黑色节点的总数增加了1”,既然这样,我们通过将“祖父节点”由“黑色”变成“红色”以解决“包含‘祖父节点’的分支的黑色节点的总数增加了1”的问题; 但是,这样处理之后又会引起另一个问题“包含‘叔叔’节点的分支的黑色节点的总数减少了1”,现在我们已知“叔叔节点”是“红色”,将“叔叔节点”设为“黑色”就能解决这个问题。 所以,将“祖父节点”由“黑色”变成红色,同时,将“叔叔节点”由“红色”变成“黑色”;就解决了该问题。
按照上面的步骤处理之后:当前节点、父节点、叔叔节点之间都不会违背红黑树特性,但祖父节点却不一定。若此时,祖父节点是根节点,直接将祖父节点设为“黑色”,那就完全解决这个问题了;若祖父节点不是根节点,那我们需要将“祖父节点”设为“新的当前节点”,接着对“新的当前节点”进行分析。
1.3 示意图
2. (Case 2)叔叔是黑色,且当前节点是右孩子
2.1 现象说明
当前节点(即,被插入节点)的父节点是红色,叔叔节点是黑色,且当前节点是其父节点的右孩子
2.2 处理策略
(01) 将“父节点”作为“新的当前节点”。
(02) 以“新的当前节点”为支点进行左旋。
下面谈谈为什么要这样处理。(建议理解的时候,通过下面的图进行对比)
首先,将“父节点”作为“新的当前节点”;接着,以“新的当前节点”为支点进行左旋。 为了便于理解,我们先说明第(02)步,再说明第(01)步;为了便于说明,我们设置“父节点”的代号为F(Father),“当前节点”的代号为S(Son)。
为什么要“以F为支点进行左旋”呢?根据已知条件可知:S是F的右孩子。而之前我们说过,我们处理红黑树的核心思想:将红色的节点移到根节点;然后,将根节点设为黑色。既然是“将红色的节点移到根节点”,那就是说要不断的将破坏红黑树特性的红色节点上移(即向根方向移动)。 而S又是一个右孩子,因此,我们可以通过“左旋”来将S上移!
按照上面的步骤(以F为支点进行左旋)处理之后:若S变成了根节点,那么直接将其设为“黑色”,就完全解决问题了;若S不是根节点,那我们需要执行步骤(01),即“将F设为‘新的当前节点’”。那为什么不继续以S为新的当前节点继续处理,而需要以F为新的当前节点来进行处理呢?这是因为“左旋”之后,F变成了S的“子节点”,即S变成了F的父节点;而我们处理问题的时候,需要从下至上(由叶到根)方向进行处理;也就是说,必须先解决“孩子”的问题,再解决“父亲”的问题;所以,我们执行步骤(01):将“父节点”作为“新的当前节点”。
2.2 示意图
3. (Case 3)叔叔是黑色,且当前节点是左孩子
3.1 现象说明
当前节点(即,被插入节点)的父节点是红色,叔叔节点是黑色,且当前节点是其父节点的左孩子
3.2 处理策略
(01) 将“父节点”设为“黑色”。
(02) 将“祖父节点”设为“红色”。
(03) 以“祖父节点”为支点进行右旋。
下面谈谈为什么要这样处理。(建议理解的时候,通过下面的图进行对比)
为了便于说明,我们设置“当前节点”为S(Original Son),“兄弟节点”为B(Brother),“叔叔节点”为U(Uncle),“父节点”为F(Father),祖父节点为G(Grand-Father)。
S和F都是红色,违背了红黑树的“特性(4)”,我们可以将F由“红色”变为“黑色”,就解决了“违背‘特性(4)’”的问题;但却引起了其它问题:违背特性(5),因为将F由红色改为黑色之后,所有经过F的分支的黑色节点的个数增加了1。那我们如何解决“所有经过F的分支的黑色节点的个数增加了1”的问题呢? 我们可以通过“将G由黑色变成红色”,同时“以G为支点进行右旋”来解决。
2.3 示意图
提示:上面的进行Case 3处理之后,再将节点"120"当作当前节点,就变成了Case 2的情况。
红黑树的基本操作(三) 删除
将红黑树内的某一个节点删除。需要执行的操作依次是:首先,将红黑树当作一颗二叉查找树,将该节点从二叉查找树中删除;然后,通过"旋转和重新着色"等一系列来修正该树,使之重新成为一棵红黑树。详细描述如下:
第一步:将红黑树当作一颗二叉查找树,将节点删除。
这和"删除常规二叉查找树中删除节点的方法是一样的"。分3种情况:
① 被删除节点没有儿子,即为叶节点。那么,直接将该节点删除就OK了。
② 被删除节点只有一个儿子。那么,直接删除该节点,并用该节点的唯一子节点顶替它的位置。
③ 被删除节点有两个儿子。那么,先找出它的后继节点;然后把“它的后继节点的内容”复制给“该节点的内容”;之后,删除“它的后继节点”。在这里,后继节点相当于替身,在将后继节点的内容复制给"被删除节点"之后,再将后继节点删除。这样就巧妙的将问题转换为"删除后继节点"的情况了,下面就考虑后继节点。 在"被删除节点"有两个非空子节点的情况下,它的后继节点不可能是双子非空。既然"的后继节点"不可能双子都非空,就意味着"该节点的后继节点"要么没有儿子,要么只有一个儿子。若没有儿子,则按"情况① "进行处理;若只有一个儿子,则按"情况② "进行处理。
第二步:通过"旋转和重新着色"等一系列来修正该树,使之重新成为一棵红黑树。
因为"第一步"中删除节点之后,可能会违背红黑树的特性。所以需要通过"旋转和重新着色"来修正该树,使之重新成为一棵红黑树。
下面对删除函数进行分析。在分析之前,我们再次温习一下红黑树的几个特性:
(1) 每个节点或者是黑色,或者是红色。
(2) 根节点是黑色。
(3) 每个叶子节点是黑色。 [注意:这里叶子节点,是指为空的叶子节点!]
(4) 如果一个节点是红色的,则它的子节点必须是黑色的。
(5) 从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点。
前面我们将"删除红黑树中的节点"大致分为两步,在第一步中"将红黑树当作一颗二叉查找树,将节点删除"后,可能违反"特性(2)、(4)、(5)"三个特性。第二步需要解决上面的三个问题,进而保持红黑树的全部特性。
为了便于分析,我们假设"x包含一个额外的黑色"(x原本的颜色还存在),这样就不会违反"特性(5)"。为什么呢?
通过RB-DELETE算法,我们知道:删除节点y之后,x占据了原来节点y的位置。 既然删除y(y是黑色),意味着减少一个黑色节点;那么,再在该位置上增加一个黑色即可。这样,当我们假设"x包含一个额外的黑色",就正好弥补了"删除y所丢失的黑色节点",也就不会违反"特性(5)"。 因此,假设"x包含一个额外的黑色"(x原本的颜色还存在),这样就不会违反"特性(5)"。
现在,x不仅包含它原本的颜色属性,x还包含一个额外的黑色。即x的颜色属性是"红+黑"或"黑+黑",它违反了"特性(1)"。
现在,我们面临的问题,由解决"违反了特性(2)、(4)、(5)三个特性"转换成了"解决违反特性(1)、(2)、(4)三个特性"。RB-DELETE-FIXUP需要做的就是通过算法恢复红黑树的特性(1)、(2)、(4)。RB-DELETE-FIXUP的思想是:将x所包含的额外的黑色不断沿树上移(向根方向移动),直到出现下面的姿态:
a) x指向一个"红+黑"节点。此时,将x设为一个"黑"节点即可。
b) x指向根。此时,将x设为一个"黑"节点即可。
c) 非前面两种姿态。
将上面的姿态,可以概括为3种情况。
① 情况说明:x是“红+黑”节点。
处理方法:直接把x设为黑色,结束。此时红黑树性质全部恢复。
② 情况说明:x是“黑+黑”节点,且x是根。
处理方法:什么都不做,结束。此时红黑树性质全部恢复。
③ 情况说明:x是“黑+黑”节点,且x不是根。
处理方法:这种情况又可以划分为4种子情况。这4种子情况如下表所示:
现象说明 | 处理策略 | |
Case 1 | x是"黑+黑"节点,x的兄弟节点是红色。(此时x的父节点和x的兄弟节点的子节点都是黑节点)。 |
(01) 将x的兄弟节点设为“黑色”。 |
Case 2 | x是“黑+黑”节点,x的兄弟节点是黑色,x的兄弟节点的两个孩子都是黑色。 |
(01) 将x的兄弟节点设为“红色”。 |
Case 3 | x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的左孩子是红色,右孩子是黑色的。 |
(01) 将x兄弟节点的左孩子设为“黑色”。 |
Case 4 | x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的右孩子是红色的,x的兄弟节点的左孩子任意颜色。 |
(01) 将x父节点颜色 赋值给 x的兄弟节点。 |
1. (Case 1)x是"黑+黑"节点,x的兄弟节点是红色
1.1 现象说明
x是"黑+黑"节点,x的兄弟节点是红色。(此时x的父节点和x的兄弟节点的子节点都是黑节点)。
1.2 处理策略
(01) 将x的兄弟节点设为“黑色”。
(02) 将x的父节点设为“红色”。
(03) 对x的父节点进行左旋。
(04) 左旋后,重新设置x的兄弟节点。
下面谈谈为什么要这样处理。(建议理解的时候,通过下面的图进行对比)
这样做的目的是将“Case 1”转换为“Case 2”、“Case 3”或“Case 4”,从而进行进一步的处理。对x的父节点进行左旋;左旋后,为了保持红黑树特性,就需要在左旋前“将x的兄弟节点设为黑色”,同时“将x的父节点设为红色”;左旋后,由于x的兄弟节点发生了变化,需要更新x的兄弟节点,从而进行后续处理。
1.3 示意图
2. (Case 2) x是"黑+黑"节点,x的兄弟节点是黑色,x的兄弟节点的两个孩子都是黑色
2.1 现象说明
x是“黑+黑”节点,x的兄弟节点是黑色,x的兄弟节点的两个孩子都是黑色。
2.2 处理策略
(01) 将x的兄弟节点设为“红色”。
(02) 设置“x的父节点”为“新的x节点”。
下面谈谈为什么要这样处理。(建议理解的时候,通过下面的图进行对比)
这个情况的处理思想:是将“x中多余的一个黑色属性上移(往根方向移动)”。 x是“黑+黑”节点,我们将x由“黑+黑”节点 变成 “黑”节点,多余的一个“黑”属性移到x的父节点中,即x的父节点多出了一个黑属性(若x的父节点原先是“黑”,则此时变成了“黑+黑”;若x的父节点原先时“红”,则此时变成了“红+黑”)。 此时,需要注意的是:所有经过x的分支中黑节点个数没变化;但是,所有经过x的兄弟节点的分支中黑色节点的个数增加了1(因为x的父节点多了一个黑色属性)!为了解决这个问题,我们需要将“所有经过x的兄弟节点的分支中黑色节点的个数减1”即可,那么就可以通过“将x的兄弟节点由黑色变成红色”来实现。
经过上面的步骤(将x的兄弟节点设为红色),多余的一个颜色属性(黑色)已经跑到x的父节点中。我们需要将x的父节点设为“新的x节点”进行处理。若“新的x节点”是“黑+红”,直接将“新的x节点”设为黑色,即可完全解决该问题;若“新的x节点”是“黑+黑”,则需要对“新的x节点”进行进一步处理。
2.3 示意图
3. (Case 3)x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的左孩子是红色,右孩子是黑色的
3.1 现象说明
x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的左孩子是红色,右孩子是黑色的。
3.2 处理策略
(01) 将x兄弟节点的左孩子设为“黑色”。
(02) 将x兄弟节点设为“红色”。
(03) 对x的兄弟节点进行右旋。
(04) 右旋后,重新设置x的兄弟节点。
下面谈谈为什么要这样处理。(建议理解的时候,通过下面的图进行对比)
我们处理“Case 3”的目的是为了将“Case 3”进行转换,转换成“Case 4”,从而进行进一步的处理。转换的方式是对x的兄弟节点进行右旋;为了保证右旋后,它仍然是红黑树,就需要在右旋前“将x的兄弟节点的左孩子设为黑色”,同时“将x的兄弟节点设为红色”;右旋后,由于x的兄弟节点发生了变化,需要更新x的兄弟节点,从而进行后续处理。
3.3 示意图
4. (Case 4)x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的右孩子是红色的,x的兄弟节点的左孩子任意颜色
4.1 现象说明
x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的右孩子是红色的,x的兄弟节点的左孩子任意颜色。
4.2 处理策略
(01) 将x父节点颜色 赋值给 x的兄弟节点。
(02) 将x父节点设为“黑色”。
(03) 将x兄弟节点的右子节设为“黑色”。
(04) 对x的父节点进行左旋。
(05) 设置“x”为“根节点”。
下面谈谈为什么要这样处理。(建议理解的时候,通过下面的图进行对比)
我们处理“Case 4”的目的是:去掉x中额外的黑色,将x变成单独的黑色。处理的方式是“:进行颜色修改,然后对x的父节点进行左旋。下面,我们来分析是如何实现的。
为了便于说明,我们设置“当前节点”为S(Original Son),“兄弟节点”为B(Brother),“兄弟节点的左孩子”为BLS(Brother's Left Son),“兄弟节点的右孩子”为BRS(Brother's Right Son),“父节点”为F(Father)。
我们要对F进行左旋。但在左旋前,我们需要调换F和B的颜色,并设置BRS为黑色。为什么需要这里处理呢?因为左旋后,F和BLS是父子关系,而我们已知BL是红色,如果F是红色,则违背了“特性(4)”;为了解决这一问题,我们将“F设置为黑色”。 但是,F设置为黑色之后,为了保证满足“特性(5)”,即为了保证左旋之后:
第一,“同时经过根节点和S的分支的黑色节点个数不变”。
若满足“第一”,只需要S丢弃它多余的颜色即可。因为S的颜色是“黑+黑”,而左旋后“同时经过根节点和S的分支的黑色节点个数”增加了1;现在,只需将S由“黑+黑”变成单独的“黑”节点,即可满足“第一”。
第二,“同时经过根节点和BLS的分支的黑色节点数不变”。
若满足“第二”,只需要将“F的原始颜色”赋值给B即可。之前,我们已经将“F设置为黑色”(即,将B的颜色"黑色",赋值给了F)。至此,我们算是调换了F和B的颜色。
第三,“同时经过根节点和BRS的分支的黑色节点数不变”。
在“第二”已经满足的情况下,若要满足“第三”,只需要将BRS设置为“黑色”即可。
经过,上面的处理之后。红黑树的特性全部得到的满足!接着,我们将x设为根节点,就可以跳出while循环(参考伪代码);即完成了全部处理。
至此,我们就完成了Case 4的处理。理解Case 4的核心,是了解如何“去掉当前节点额外的黑色”。
4.3 示意图
红黑树-插入实例
前言
本篇博客我们说一说如何从无到有创建一颗红黑树,并在创建红黑树的过程中理解其构造原理。
红黑树规则
首先我们复习一下红黑树的五项规则,如下:
- 规则一:每个节点或者是黑色,或者是红色;
- 规则二:根节点是黑色;
- 规则三:每个叶子节点(NIL/NULL)是黑色;
- 规则四:如果一个节点是红色的,则它的子节点必须是黑色的;
- 规则五:从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点;
插入规则
其次我们知道要将一个节点N插入到红黑树的时候是要根据二叉查找树的规则进行的,即比某节点X小往其左子树走,比某节点X大则往其右子树走,一直比较下去直至叶子节点;
待插入节点的颜色
然后我们需要对待插入的节点进行着色,那么着什么色呢?答案是红色,可是为什么呢?黑色不行吗?
结合上面说过的红黑树的五项规则我们知道,如果把待插入的节点着色为黑色,那么插入新节点后的红黑树一定是违背规则五的,所以每次插入新节点后都需要进行修正;
而如果把待插入的节点着色为红色,插入后的红黑树肯定是不会违背规则五,但是可能会违背规则二或者规则四(每次插入最多只可能会违背其中一项),所以每次插入后红黑树可能会需要修正,也有可能不需要修正,这就意味着我们需要处理的情况会比着色为黑色的情况要少!
修正规则
什么情况下需要对插入新节点后的红黑树进行修正?
我们需要结合红黑树的五项规则和待插入节点的颜色为红色这两点来看!
当新插入一个节点时,首先规则一和规则三不用管,又因为待插入节点的颜色为红色的,所以规则五也不用管(但是在修正过程中可能会违背规则五);
而对于规则二,只有在插入第一个节点或者修正过程中会违背(插入第一个节点时肯定违背,因为待插入节点的颜色为红色),但是处理策略也很简单,直接将新插入的节点/当前节点重新着色为黑色即可;
如果新插入节点的父节点是黑色,那么不用管,插入后的红黑树还是符合规则的,如果新插入节点的父节点是红色,那么就需要进行修正了,因为违背了规则四,具体处理策略如下:
违背规则四时 现象说明 处理策略
情况一 当前节点的父节点是红色,且当前节点的祖父节点的另一个子节点(叔叔节点)也是红色 (01) 将父节点设为黑色;
(02) 将叔叔节点设为黑色;
(03) 将祖父节点设为红色;
(04) 将祖父节点设为当前节点(红色节点);
(05)之后继续对当前节点进行判断是否违背规则并操作;
情况二 当前节点的父节点是红色,叔叔节点是黑色,且当前节点是其父节点的右孩子 (01) 将父节点设为黑色;
(02) 将祖父节点设为红色;
(03) 以祖父节点为支点进行左旋;
情况三 当前节点的父节点是红色,叔叔节点是黑色,且当前节点是其父节点的左孩子 (01) 将父节点作为新的当前节点;
(02) 以新的当前节点为支点进行右旋;
(03)之后继续对新的当前节点进行判断是否违背规则并操作;
插入的情况参考:红黑树原理以及插入、删除算法 附图例说明
参考:红黑树-插入
红黑树之 原理和算法详细介绍(阿里面试-treemap使用了红黑树) 红黑树的时间复杂度是O(lgn) 高度<=2log(n+1)1、X节点左旋-将X右边的子节点变成 父节点 2、X节点右旋-将X左边的子节点变成父节点的更多相关文章
- chandy-lamport 分布式一致性快照 算法详细介绍
在一个分布式计算系统中,为了保证数据的一致性需要对数据进行一致性快照.Flink和spark在做流失计算的时候都借鉴了chandy-lamport算法的原理,这篇文章就是对chandy-lamport ...
- ASE加解密算法详细介绍
AEC扫盲主要增对CBC模式做详细讲解: https://blog.csdn.net/qq_28205153/article/details/55798628 AEC其他几种模式详细介绍 https: ...
- Java 集合系列12之 TreeMap详细介绍(源码解析)和使用示例
概要 这一章,我们对TreeMap进行学习.我们先对TreeMap有个整体认识,然后再学习它的源码,最后再通过实例来学会使用TreeMap.内容包括:第1部分 TreeMap介绍第2部分 TreeMa ...
- 【转】Java 集合系列12之 TreeMap详细介绍(源码解析)和使用示例
概要 这一章,我们对TreeMap进行学习.我们先对TreeMap有个整体认识,然后再学习它的源码,最后再通过实例来学会使用TreeMap.内容包括:第1部分 TreeMap介绍第2部分 TreeMa ...
- TreeMap详细介绍(源码解析)和使用示例
本文转自 http://www.cnblogs.com/skywang12345/p/3310928.html 概要 这一章,我们对TreeMap进行学习.我们先对TreeMap有个整体认识,然后再学 ...
- 模型汇总24 - 深度学习中Attention Mechanism详细介绍:原理、分类及应用
模型汇总24 - 深度学习中Attention Mechanism详细介绍:原理.分类及应用 lqfarmer 深度学习研究员.欢迎扫描头像二维码,获取更多精彩内容. 946 人赞同了该文章 Atte ...
- 高级数据结构---红黑树及其插入左旋右旋代码java实现
前面我们说到的二叉查找树,可以看到根结点是初始化之后就是固定了的,后续插入的数如果都比它大,或者都比它小,那么这个时候它就退化成了链表了,查询的时间复杂度就变成了O(n),而不是理想中O(logn), ...
- Unity3d 发动机原理详细介绍
Unity3d 发动机原理详细介绍 www.MyException.Cn 发布于:2013-10-08 16:32:36 浏览:46次 0 Unity3d 引擎原理详细介绍 体系结构 ...
- Tensorflow 2.0 深度学习实战 —— 详细介绍损失函数、优化器、激活函数、多层感知机的实现原理
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只 ...
随机推荐
- windows10 安装win10和ubuntu 16.04双系统
安装教程如下 亲测可用 https://www.cnblogs.com/masbay/p/10844857.html 镜像路径如下 http://releases.ubuntu.com/16.04/ ...
- Java之Iterator接口(遍历单列集合的迭代器)
Iterator接口概述 在程序开发中,经常需要遍历集合中的所有元素.针对这种需求,JDK专门提供了一个接口java.util.Iterator . Iterator 接口也是Java集合中的一员,但 ...
- RabbitMQ的高级特性概念理解
1.RabbitMQ中的消息如何保障百分之百的投递成功? 答:百分之百的投递成功,方案可以参考下面的2.3. 2.什么是生产者端的可靠性投递? 答:第一步,生产者保障消息的成功发出.第二步,保障Rab ...
- Selenium(十七):unittest单元测试框架(三) 脚本分析、编写Web用例
1. 带unittest的脚本分析 也许你现在心里还有疑问,unittest框架与我们前面所编写的Web自动化测试之间有什么必然联系吗?当然有,既然unittest可以组织.运行测试用例,那么为什么不 ...
- JavaScript的概念,引入,基本数据类型
08.05自我总结 JavaScript 一.概念 JavaScript(下文我们会用简称JS来代替)是脚本编程语言,JS语言开发的文件是以.js为后缀,通过在html文件中引入该js文件来控制htm ...
- Java操作数据库——使用JDBC连接数据库
Java操作数据库——使用JDBC连接数据库 摘要:本文主要学习了如何使用JDBC连接数据库. 背景 数据持久化 数据持久化就是把数据保存到可掉电式存储设备中以供之后使用.大多数情况下,特别是企业级应 ...
- 前vue.js+elementui,后koa2,nodejs搭建网站
1,安装 nodejs,npm 2,使用 npm 安装 vue,vue-cli 3,使用脚手架搭建项目,添加依赖:axios,vue-router,elementui,vuex 等 4,建立 rout ...
- Oracle创建表、删除表、修改表(添加字段、修改字段、删除字段)语句总结
创建表: create table 表名 ( 字段名1 字段类型 默认值 是否为空 , 字段名2 字段类型 默认值 是否为空, 字段名3 字段类型 默认值 是否为空, ...... ); 创建一个us ...
- 30-学容器必须懂 bridge 网络
Docker 安装时会创建一个 命名为 docker0 的 linux bridge.如果不指定--network,创建的容器默认都会挂到 docker0 上. apt-get install bri ...
- InfluxDB因修改默认数据目录导致服务无法正常运行的问题(权限问题)
在实际的生产中,考虑的实际情况,我们会调整一些默认配置,例如,数据目录.InfluxDB修改默认的Data目录后,因权限问题,服务无法正常运行.以下是具体的分析测试过程. 配置文件为 /etc/inf ...