[ML机器学习 - Stanford University] - Week1 - 01 Introduction
What is Machine Learning?
Two definitions of Machine Learning are offered. Arthur Samuel described it as: "the field of study that gives computers the ability to learn without being explicitly programmed." This is an older, informal definition.
Tom Mitchell provides a more modern definition: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."
Example: playing checkers.
E = the experience of playing many games of checkers
T = the task of playing checkers.
P = the probability that the program will win the next game.
In general, any machine learning problem can be assigned to one of two broad classifications:
Supervised learning and Unsupervised learning.
Supervised Learning
In supervised learning, we are given a data set and already know what our correct output should look like, having the idea that there is a relationship between the input and the output.
Supervised learning problems are categorized into "regression(回归)" and "classification(分类)" problems. In a regression problem, we are trying to predict results within a continuous output, meaning that we are trying to map input variables to some continuous function. In a classification problem, we are instead trying to predict results in a discrete output. In other words, we are trying to map input variables into discrete categories.
Example 1:
Given data about the size of houses on the real estate market, try to predict their price. Price as a function of size is a continuous output, so this is a regression problem.
We could turn this example into a classification problem by instead making our output about whether the house "sells for more or less than the asking price." Here we are classifying the houses based on price into two discrete categories.
Example 2:
(a) Regression - Given a picture of a person, we have to predict their age on the basis of the given picture
(b) Classification - Given a patient with a tumor, we have to predict whether the tumor is malignant or benign.
Unsupervised Learning
Unsupervised learning allows us to approach problems with little or no idea what our results should look like. We can derive structure from data where we don't necessarily know the effect of the variables.
We can derive this structure by clustering the data based on relationships among the variables in the data.
With unsupervised learning there is no feedback based on the prediction results.
Example:
Clustering: Take a collection of 1,000,000 different genes, and find a way to automatically group these genes into groups that are somehow similar or related by different variables, such as lifespan, location, roles, and so on.
Non-clustering: The "Cocktail Party Algorithm", allows you to find structure in a chaotic environment. (i.e. identifying individual voices and music from a mesh of sounds at a cocktail party).
[ML机器学习 - Stanford University] - Week1 - 01 Introduction的更多相关文章
- ML Lecture 0-1: Introduction of Machine Learning
本博客是针对李宏毅教授在Youtube上上传的课程视频<ML Lecture 0-1: Introduction of Machine Learning>的学习笔记.在Github上也po ...
- Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)
title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...
- 学习笔记之Machine Learning by Andrew Ng | Stanford University | Coursera
Machine Learning by Andrew Ng | Stanford University | Coursera https://www.coursera.org/learn/machin ...
- ML:吴恩达 机器学习 课程笔记(Week1~2)
吴恩达(Andrew Ng)机器学习课程:课程主页 由于博客编辑器有些不顺手,所有的课程笔记将全部以手写照片形式上传.有机会将在之后上传课程中各个ML算法实现的Octave版本. Linear Reg ...
- 李宏毅老师机器学习课程笔记_ML Lecture 0-1: Introduction of Machine Learning
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子 ...
- 李宏毅机器学习笔记4:Brief Introduction of Deep Learning、Backpropagation(后向传播算法)
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对 ...
- Spark ML机器学习
Spark提供了常用机器学习算法的实现, 封装于spark.ml和spark.mllib中. spark.mllib是基于RDD的机器学习库, spark.ml是基于DataFrame的机器学习库. ...
- Core ML 机器学习
在WWDC 2017开发者大会上,苹果宣布了一系列新的面向开发者的机器学习 API,包括面部识别的视觉 API.自然语言处理 API,这些 API 集成了苹果所谓的 Core ML 框架.Core M ...
- ml机器学习笔记
一.安装机器学习的包 1.conda create -n ml python=3.6 2.source activate ml 3.升级pip :pip install --upgrade pip 4 ...
随机推荐
- nuxt.js部署vue应用到服务端过程
由于seo的需要,最近将项目移植道nuxt.js下采用ssr渲染 移植完成后,一路顺畅,但是到了要部署到服务器端上时候,还是个头疼的问题,但最终还是顺利完成.现在记录一下部署中的过程. 注:部署时候过 ...
- The usage of Markdown---代码块
目录 1. 序言 2. 代码块 3. 引用中的代码 4. 列表中的代码块 更新时间:2019.09.14 1. 序言 在写技术博客的时候,我们常常需要添加一下代码块用来做演示说明,实际上在这篇博客 ...
- SpringMVC重点知识总结
SpringMVC总结 1. SpringMVC简介 MVC即模型-视图-控制器(Model-View-Controller) Spring Web MVC是一种基于Java的实现了Web MVC设计 ...
- 解压zip文件
/// <summary> /// 执行压缩命令结果 /// </summary> public enum CompressResults { Success, SourceO ...
- vue-cli 如何使用vue-awesome?
font-awesome 有很多图标字体可供使用,那么,如何在vue中使用呢? 进入重点... 1.安装vue-awesome npm insatll vue-awesome 2.在main.js 注 ...
- 第三十八章 POSIX线程(二)
线程属性 初始化与销毁属性 int pthread_attr_init(pthread_attr_t *attr); int pthread_attr_destroy(pthread_attr_t * ...
- Python 加密 shellcode 免杀
Python 加密 shellcode 免杀 环境准备: Windows7 32 位系统: Shellcode 使用 kali linux Metasploit 生成 shellcode Wind ...
- No such application config! Please add dubbo:application
SpringBoot运行找不到application.properties配置文件 运行springBoot项目启动报错:java.lang.IllegalStateException: No suc ...
- 单(single):换根dp,表达式分析,高斯消元
虽说这题看大家都改得好快啊,但是为什么我感觉这题挺难.(我好菜啊) 所以不管怎么说那群切掉这题的大佬是不会看这篇博客的所以我要开始自嗨了. 这题,明显是树dp啊.只不过出题人想看你发疯,询问二合一了而 ...
- NOIP模拟 16
嗯我已经是个不折不扣的大辣鸡了 上次的T3就弃了,这次又弃 颓废到天际 T1 巨贪贪心算法 我就是一个只会背板子的大辣鸡 全裸的贪心看不出来,只会打板子 打板子,加特判,然后一无进展,原题不会,这就是 ...