[ML机器学习 - Stanford University] - Week1 - 01 Introduction
What is Machine Learning?
Two definitions of Machine Learning are offered. Arthur Samuel described it as: "the field of study that gives computers the ability to learn without being explicitly programmed." This is an older, informal definition.
Tom Mitchell provides a more modern definition: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."
Example: playing checkers.
E = the experience of playing many games of checkers
T = the task of playing checkers.
P = the probability that the program will win the next game.
In general, any machine learning problem can be assigned to one of two broad classifications:
Supervised learning and Unsupervised learning.
Supervised Learning
In supervised learning, we are given a data set and already know what our correct output should look like, having the idea that there is a relationship between the input and the output.
Supervised learning problems are categorized into "regression(回归)" and "classification(分类)" problems. In a regression problem, we are trying to predict results within a continuous output, meaning that we are trying to map input variables to some continuous function. In a classification problem, we are instead trying to predict results in a discrete output. In other words, we are trying to map input variables into discrete categories.
Example 1:
Given data about the size of houses on the real estate market, try to predict their price. Price as a function of size is a continuous output, so this is a regression problem.
We could turn this example into a classification problem by instead making our output about whether the house "sells for more or less than the asking price." Here we are classifying the houses based on price into two discrete categories.
Example 2:
(a) Regression - Given a picture of a person, we have to predict their age on the basis of the given picture
(b) Classification - Given a patient with a tumor, we have to predict whether the tumor is malignant or benign.
Unsupervised Learning
Unsupervised learning allows us to approach problems with little or no idea what our results should look like. We can derive structure from data where we don't necessarily know the effect of the variables.
We can derive this structure by clustering the data based on relationships among the variables in the data.
With unsupervised learning there is no feedback based on the prediction results.
Example:
Clustering: Take a collection of 1,000,000 different genes, and find a way to automatically group these genes into groups that are somehow similar or related by different variables, such as lifespan, location, roles, and so on.
Non-clustering: The "Cocktail Party Algorithm", allows you to find structure in a chaotic environment. (i.e. identifying individual voices and music from a mesh of sounds at a cocktail party).
[ML机器学习 - Stanford University] - Week1 - 01 Introduction的更多相关文章
- ML Lecture 0-1: Introduction of Machine Learning
本博客是针对李宏毅教授在Youtube上上传的课程视频<ML Lecture 0-1: Introduction of Machine Learning>的学习笔记.在Github上也po ...
- Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)
title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...
- 学习笔记之Machine Learning by Andrew Ng | Stanford University | Coursera
Machine Learning by Andrew Ng | Stanford University | Coursera https://www.coursera.org/learn/machin ...
- ML:吴恩达 机器学习 课程笔记(Week1~2)
吴恩达(Andrew Ng)机器学习课程:课程主页 由于博客编辑器有些不顺手,所有的课程笔记将全部以手写照片形式上传.有机会将在之后上传课程中各个ML算法实现的Octave版本. Linear Reg ...
- 李宏毅老师机器学习课程笔记_ML Lecture 0-1: Introduction of Machine Learning
引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子 ...
- 李宏毅机器学习笔记4:Brief Introduction of Deep Learning、Backpropagation(后向传播算法)
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对 ...
- Spark ML机器学习
Spark提供了常用机器学习算法的实现, 封装于spark.ml和spark.mllib中. spark.mllib是基于RDD的机器学习库, spark.ml是基于DataFrame的机器学习库. ...
- Core ML 机器学习
在WWDC 2017开发者大会上,苹果宣布了一系列新的面向开发者的机器学习 API,包括面部识别的视觉 API.自然语言处理 API,这些 API 集成了苹果所谓的 Core ML 框架.Core M ...
- ml机器学习笔记
一.安装机器学习的包 1.conda create -n ml python=3.6 2.source activate ml 3.升级pip :pip install --upgrade pip 4 ...
随机推荐
- 如何使用代理IP进行数据抓取,PHP爬虫抓取亚马逊商品数据
什么是代理?什么情况下会用到代理IP? 代理服务器(Proxy Server),其功能就是代用户去取得网络信息,然后返回给用户.形象的说:它是网络信息的中转站.通过代理IP访问目标站,可以隐藏用户的真 ...
- The usage of Markdown---引用
目录 1. 序言 2. 引用与嵌套引用 3. 列表中的引用 更新时间:209.09.14 1. 序言 在本篇,我们来仔细谈一下Markdown的引用. 2. 引用与嵌套引用 在Markdown ...
- Veins(车载通信仿真框架)入门教程(三)——多跳路由实现指导
Veins(车载通信仿真框架)入门教程(三)——多跳路由实现指导 Veins(车载通信仿真框架)入门教程(三)——多跳路由实现指导 必要的message类实现 从下面开始是在veins/src/vei ...
- Unity Dropdown
unity DropDown控件应用很简单 代码如下 frameDpdown.options.Clear(); //Dropdown.OptionData optDataFrame = new Dro ...
- Spring Boot 日志处理你还在用Logback?
▶ Log4j2 性能 https://logging.apache.org/log4j/2.x/performance.html ▶ Spring Boot 依赖与配置 Maven 依赖 <! ...
- 《JavaScript设计模式与开发实践》-- 迭代器模式
详情个人博客:https://shengchangwei.github.io/js-shejimoshi-diedaiqi/ 迭代器模式 1.定义 迭代器模式: 是指提供一种方法顺序访问一个聚合对象中 ...
- Angular工作笔记(2018/8/8)
需求1:input标签只允许输入数字且不会出现上下选择按钮 开始设置 type="number" 客户不想要出现上下选择按钮 解决方法: 但是这种写法会有一个限制,只能输入整数,无 ...
- C Primer Plus (一)
摘要:重读C Primer Plus ,查漏补缺 重读C Primer Plus,记录遗漏的.未掌握的.不清楚的知识点. 一.概览 1.链接器的作用是将这3个目标元素(目标代码.系统的标准启动代码和库 ...
- 学习笔记64_k邻近算法
1 .假定已知数据的各个属性值,以及其类型,例如: 电影名称 打斗镜头 接吻镜头 电影类别 m1 3 104 爱情片 m2 2 100 爱情片 m3 1 81 爱情片 m4 2 90 爱情片 w1 1 ...
- day1 晚上 P4145 上帝造题的七分钟2 / 花神游历各国 线段树
#include<iostream> #include<cstdio> #include<cmath> using namespace std; ; struct ...