What is Machine Learning?

Two definitions of Machine Learning are offered. Arthur Samuel described it as: "the field of study that gives computers the ability to learn without being explicitly programmed." This is an older, informal definition.

Tom Mitchell provides a more modern definition: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

Example: playing checkers.

E = the experience of playing many games of checkers

T = the task of playing checkers.

P = the probability that the program will win the next game.

In general, any machine learning problem can be assigned to one of two broad classifications:
Supervised learning and Unsupervised learning.

Supervised Learning

In supervised learning, we are given a data set and already know what our correct output should look like, having the idea that there is a relationship between the input and the output.

Supervised learning problems are categorized into "regression(回归)" and "classification(分类)" problems. In a regression problem, we are trying to predict results within a continuous output, meaning that we are trying to map input variables to some continuous function. In a classification problem, we are instead trying to predict results in a discrete output. In other words, we are trying to map input variables into discrete categories.

Example 1:

Given data about the size of houses on the real estate market, try to predict their price. Price as a function of size is a continuous output, so this is a regression problem.

We could turn this example into a classification problem by instead making our output about whether the house "sells for more or less than the asking price." Here we are classifying the houses based on price into two discrete categories.

Example 2:

(a) Regression - Given a picture of a person, we have to predict their age on the basis of the given picture

(b) Classification - Given a patient with a tumor, we have to predict whether the tumor is malignant or benign.

Unsupervised Learning

Unsupervised learning allows us to approach problems with little or no idea what our results should look like. We can derive structure from data where we don't necessarily know the effect of the variables.

We can derive this structure by clustering the data based on relationships among the variables in the data.

With unsupervised learning there is no feedback based on the prediction results.

Example:

Clustering: Take a collection of 1,000,000 different genes, and find a way to automatically group these genes into groups that are somehow similar or related by different variables, such as lifespan, location, roles, and so on.

Non-clustering: The "Cocktail Party Algorithm", allows you to find structure in a chaotic environment. (i.e. identifying individual voices and music from a mesh of sounds at a cocktail party).

[ML机器学习 - Stanford University] - Week1 - 01 Introduction的更多相关文章

  1. ML Lecture 0-1: Introduction of Machine Learning

    本博客是针对李宏毅教授在Youtube上上传的课程视频<ML Lecture 0-1: Introduction of Machine Learning>的学习笔记.在Github上也po ...

  2. Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)

    title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...

  3. 学习笔记之Machine Learning by Andrew Ng | Stanford University | Coursera

    Machine Learning by Andrew Ng | Stanford University | Coursera https://www.coursera.org/learn/machin ...

  4. ML:吴恩达 机器学习 课程笔记(Week1~2)

    吴恩达(Andrew Ng)机器学习课程:课程主页 由于博客编辑器有些不顺手,所有的课程笔记将全部以手写照片形式上传.有机会将在之后上传课程中各个ML算法实现的Octave版本. Linear Reg ...

  5. 李宏毅老师机器学习课程笔记_ML Lecture 0-1: Introduction of Machine Learning

    引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子 ...

  6. 李宏毅机器学习笔记4:Brief Introduction of Deep Learning、Backpropagation(后向传播算法)

    李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对 ...

  7. Spark ML机器学习

    Spark提供了常用机器学习算法的实现, 封装于spark.ml和spark.mllib中. spark.mllib是基于RDD的机器学习库, spark.ml是基于DataFrame的机器学习库. ...

  8. Core ML 机器学习

    在WWDC 2017开发者大会上,苹果宣布了一系列新的面向开发者的机器学习 API,包括面部识别的视觉 API.自然语言处理 API,这些 API 集成了苹果所谓的 Core ML 框架.Core M ...

  9. ml机器学习笔记

    一.安装机器学习的包 1.conda create -n ml python=3.6 2.source activate ml 3.升级pip :pip install --upgrade pip 4 ...

随机推荐

  1. 每日温度(LeetCode Medium难度算法题)题解

    LeetCode 题号739中等难度 每日温度 题目描述: 根据每日 气温 列表,请重新生成一个列表,对应位置的输入是你需要再等待多久温度才会升高超过该日的天数.如果之后都不会升高,请在该位置用 0 ...

  2. 基础安全术语科普(六)——exploit

    exploit (漏洞利用) 利用漏洞存在两种攻击形式: 1.Remote(远程):利用系统漏洞来获得访问权限. 2.local(本地):需要对系统进行物理访问来实现攻击. 如何发现漏洞? 利用逆向工 ...

  3. Mybaits 源码解析 (四)----- SqlSession的创建过程(看懂框架源码再也不用死记硬背面试题)

    SqlSession是mybatis的核心接口之一,是myabtis接口层的主要组成部分,对外提供了mybatis常用的api.myabtis提供了两个SqlSesion接口的实现,常用的实现类是De ...

  4. 用Python校准本地时间

    目录 1. 概念 1.1 基本概念 1.2 版本演进 2. 示例演示 2.1 前提条件 2.2 完整代码 2.3 其他问题 3. 参考信息: 1. 概念 1.1 基本概念 时间,对于我们来说很重要,什 ...

  5. java实现,使用opencv合成全景图,前端使用krpano展示

    这周花三天做了一demo,算上之前的,怎么也有五天,上一篇是opencv介绍,以及定义native方法,通过本地图片路径传参,底层调用Opencv图像库合成,有兴趣的可以看看,这篇重点在于krpano ...

  6. Redis(二)数据结构与键管理

    一.基础知识 1.全局命令 keys *   :查看所有键 dbsize:返回当前数据库中键的总数 exists key:检查键是否存在 del key ... :删除键 expire key sec ...

  7. 元素“context:component-scan”的前缀“context”未绑定

    首先报这个错误,你得明白,是什么原因导致的? 答:未引入命名空间,和约束文件 解决方法(加上标红色标记): <?xml version="1.0" encoding=&quo ...

  8. 使用pyquery

    简单举例 from pyquery import PyQuery as pq html = ''' <div> <ul> <li class="item-O&q ...

  9. 前端技术之:Prisma Demo服务部署过程记录

    安装前提条件: 1.已经安装了docker运行环境 2.以下命令执行记录发生在MackBook环境 3.已经安装了PostgreSQL(我使用的是11版本) 4.Node开发运行环境可以正常工作   ...

  10. 【aliyun】学java,看这里,不迷茫!1460道Java热门问题

    阿里极客公益活动: 或许你挑灯夜战只为一道难题 或许你百思不解只求一个答案 或许你绞尽脑汁只因一种未知 那么他们来了,阿里系技术专家来云栖问答为你解答技术难题了 他们用户自己手中的技术来帮助用户成长 ...