What is Machine Learning?

Two definitions of Machine Learning are offered. Arthur Samuel described it as: "the field of study that gives computers the ability to learn without being explicitly programmed." This is an older, informal definition.

Tom Mitchell provides a more modern definition: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

Example: playing checkers.

E = the experience of playing many games of checkers

T = the task of playing checkers.

P = the probability that the program will win the next game.

In general, any machine learning problem can be assigned to one of two broad classifications:
Supervised learning and Unsupervised learning.

Supervised Learning

In supervised learning, we are given a data set and already know what our correct output should look like, having the idea that there is a relationship between the input and the output.

Supervised learning problems are categorized into "regression(回归)" and "classification(分类)" problems. In a regression problem, we are trying to predict results within a continuous output, meaning that we are trying to map input variables to some continuous function. In a classification problem, we are instead trying to predict results in a discrete output. In other words, we are trying to map input variables into discrete categories.

Example 1:

Given data about the size of houses on the real estate market, try to predict their price. Price as a function of size is a continuous output, so this is a regression problem.

We could turn this example into a classification problem by instead making our output about whether the house "sells for more or less than the asking price." Here we are classifying the houses based on price into two discrete categories.

Example 2:

(a) Regression - Given a picture of a person, we have to predict their age on the basis of the given picture

(b) Classification - Given a patient with a tumor, we have to predict whether the tumor is malignant or benign.

Unsupervised Learning

Unsupervised learning allows us to approach problems with little or no idea what our results should look like. We can derive structure from data where we don't necessarily know the effect of the variables.

We can derive this structure by clustering the data based on relationships among the variables in the data.

With unsupervised learning there is no feedback based on the prediction results.

Example:

Clustering: Take a collection of 1,000,000 different genes, and find a way to automatically group these genes into groups that are somehow similar or related by different variables, such as lifespan, location, roles, and so on.

Non-clustering: The "Cocktail Party Algorithm", allows you to find structure in a chaotic environment. (i.e. identifying individual voices and music from a mesh of sounds at a cocktail party).

[ML机器学习 - Stanford University] - Week1 - 01 Introduction的更多相关文章

  1. ML Lecture 0-1: Introduction of Machine Learning

    本博客是针对李宏毅教授在Youtube上上传的课程视频<ML Lecture 0-1: Introduction of Machine Learning>的学习笔记.在Github上也po ...

  2. Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)

    title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...

  3. 学习笔记之Machine Learning by Andrew Ng | Stanford University | Coursera

    Machine Learning by Andrew Ng | Stanford University | Coursera https://www.coursera.org/learn/machin ...

  4. ML:吴恩达 机器学习 课程笔记(Week1~2)

    吴恩达(Andrew Ng)机器学习课程:课程主页 由于博客编辑器有些不顺手,所有的课程笔记将全部以手写照片形式上传.有机会将在之后上传课程中各个ML算法实现的Octave版本. Linear Reg ...

  5. 李宏毅老师机器学习课程笔记_ML Lecture 0-1: Introduction of Machine Learning

    引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子 ...

  6. 李宏毅机器学习笔记4:Brief Introduction of Deep Learning、Backpropagation(后向传播算法)

    李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对 ...

  7. Spark ML机器学习

    Spark提供了常用机器学习算法的实现, 封装于spark.ml和spark.mllib中. spark.mllib是基于RDD的机器学习库, spark.ml是基于DataFrame的机器学习库. ...

  8. Core ML 机器学习

    在WWDC 2017开发者大会上,苹果宣布了一系列新的面向开发者的机器学习 API,包括面部识别的视觉 API.自然语言处理 API,这些 API 集成了苹果所谓的 Core ML 框架.Core M ...

  9. ml机器学习笔记

    一.安装机器学习的包 1.conda create -n ml python=3.6 2.source activate ml 3.升级pip :pip install --upgrade pip 4 ...

随机推荐

  1. jquery a标签的锚点点击的时候页面上缓慢滚动

    a标签增加一个名字触发效果: $(".transition").click(function(){ if (location.pathname.replace(/^\//, '') ...

  2. The usage of Markdown---链接的使用

    目录 1. 序言 2. 网页链接 3. 图片链接 4. 页内跳转 更新时间:2019.09.14 1. 序言   在编辑文章的时候,我们常常需要插入各种链接,比如说网页链接,图片链接等等.当文章篇幅过 ...

  3. (六)添加adbmingling

    给环境变量Path添加adb命令路径,即adb.exe所在的目录 C:\Users\LIU Liang\AppData\Local\Android\Sdk\platform-tools

  4. 全排列函数(next_permutation())

    平常需要全排列的时候,一般都是dfs然后字符串匹配啥的……今天看题解的时候突然发现了这个神器. next_permutation()函数在c++的algorithm库里,作用是传入一个数组,输出这个数 ...

  5. 创建 numpy.array

    # 导包 import numpy as np numpy.array nparr = np.array([i for i in range(10)]) nparr # array([0, 1, 2, ...

  6. NOIP模拟 11

    差点迟到没赶上开题 开题后看了T1,好像一道原题,没分析复杂度直接敲了个NC线段树,敲了个暴力,敲了个对拍,就1h了.. 对拍还对出错了,发现标记下传有点问题,改了以后对拍通过,就把T1扔掉看T2 觉 ...

  7. SSM配置后可以访问静态html文件但无法访问其他后台接口的解决方案

    web.xml中的一段 <servlet> <servlet-name>SpringMVC</servlet-name> <servlet-class> ...

  8. 2019.11.11 洛谷月赛t3

    题目背景 由于Y校的老师非常毒瘤,要求\(zhouwc\)在\(csp\)考前最后\(3\)天参加期中考,\(zhouwc\)非常生气,决定消极考试,以涂完卡但全错为目标.现在\(retcarizy\ ...

  9. Java描述设计模式(17):调停者模式

    本文源码:GitHub·点这里 || GitEE·点这里 一.生活场景 1.场景描述 在公司的日常安排中,通常划分多个部门,每个部门又会分为不同的小组,部门经理的一项核心工作就是协调部门小组之间的工作 ...

  10. 吉利WA数