使用flink Table &Sql api来构建批量和流式应用(1)Table的基本概念
从flink的官方文档,我们知道flink的编程模型分为四层,sql层是最高层的api,Table api是中间层,DataStream/DataSet Api 是核心,stateful Streaming process层是底层实现。
其中,
flink dataset api使用及原理 介绍了DataSet Api
flink DataStream API使用及原理介绍了DataStream Api
flink中的时间戳如何使用?---Watermark使用及原理 介绍了底层实现的基础Watermark
flink window实例分析 介绍了window的概念及使用原理
Flink中的状态与容错 介绍了State的概念及checkpoint,savepoint的容错机制
0. 基本概念:
0.1 TableEnvironment
TableEnvironment是Table API和SQL集成的核心概念,它主要负责:
2、注册一个外部目录Catalog
3、执行SQL查询
4、注册一个用户自定义函数UDF
5、将DataStream或者DataSet转换成Table
6、持有BatchTableEnvironment或者StreamTableEnvironment的引用
- /**
- * The base class for batch and stream TableEnvironments.
- *
- * <p>The TableEnvironment is a central concept of the Table API and SQL integration. It is
- * responsible for:
- *
- * <ul>
- * <li>Registering a Table in the internal catalog</li>
- * <li>Registering an external catalog</li>
- * <li>Executing SQL queries</li>
- * <li>Registering a user-defined scalar function. For the user-defined table and aggregate
- * function, use the StreamTableEnvironment or BatchTableEnvironment</li>
- * </ul>
- */
0.2 Catalog
Catalog:所有对数据库和表的元数据信息都存放再Flink CataLog内部目录结构中,其存放了flink内部所有与Table相关的元数据信息,包括表结构信息/数据源信息等。
- /**
- * This interface is responsible for reading and writing metadata such as database/table/views/UDFs
- * from a registered catalog. It connects a registered catalog and Flink's Table API.
- */
其结构如下:
0.3 TableSource
在使用Table API时,可以将外部的数据源直接注册成Table数据结构。此结构称之为TableSource
- /**
- * Defines an external table with the schema that is provided by {@link TableSource#getTableSchema}.
- *
- * <p>The data of a {@link TableSource} is produced as a {@code DataSet} in case of a {@code BatchTableSource}
- * or as a {@code DataStream} in case of a {@code StreamTableSource}. The type of ths produced
- * {@code DataSet} or {@code DataStream} is specified by the {@link TableSource#getProducedDataType()} method.
- *
- * <p>By default, the fields of the {@link TableSchema} are implicitly mapped by name to the fields of
- * the produced {@link DataType}. An explicit mapping can be defined by implementing the
- * {@link DefinedFieldMapping} interface.
- *
- * @param <T> The return type of the {@link TableSource}.
- */
0.4 TableSink
数据处理完成后需要将结果写入外部存储中,在Table API中有对应的Sink模块,此模块为TableSink
- /**
- * A {@link TableSink} specifies how to emit a table to an external
- * system or location.
- *
- * <p>The interface is generic such that it can support different storage locations and formats.
- *
- * @param <T> The return type of the {@link TableSink}.
- */
0.5 Table Connector
在Flink1.6版本之后,为了能够让Table API通过配置化的方式连接外部系统,且同时可以在sql client中使用,flink 提出了Table Connector的概念,主要目的时将Table Source和Table Sink的定义和使用分离。
通过Table Connector将不同内建的Table Source和TableSink封装,形成可以配置化的组件,在Table Api和Sql client能够同时使用。
- /**
- * Creates a table source and/or table sink from a descriptor.
- *
- * <p>Descriptors allow for declaring the communication to external systems in an
- * implementation-agnostic way. The classpath is scanned for suitable table factories that match
- * the desired configuration.
- *
- * <p>The following example shows how to read from a connector using a JSON format and
- * register a table source as "MyTable":
- *
- * <pre>
- * {@code
- *
- * tableEnv
- * .connect(
- * new ExternalSystemXYZ()
- * .version("0.11"))
- * .withFormat(
- * new Json()
- * .jsonSchema("{...}")
- * .failOnMissingField(false))
- * .withSchema(
- * new Schema()
- * .field("user-name", "VARCHAR").from("u_name")
- * .field("count", "DECIMAL")
- * .registerSource("MyTable");
- * }
- *</pre>
- *
- * @param connectorDescriptor connector descriptor describing the external system
- */
- TableDescriptor connect(ConnectorDescriptor connectorDescriptor);
本篇主要聚焦于sql和Table Api。
1.sql
1.1 基于DataSet api的sql
示例:
- package org.apache.flink.table.examples.java;
- import org.apache.flink.api.java.DataSet;
- import org.apache.flink.api.java.ExecutionEnvironment;
- import org.apache.flink.table.api.Table;
- import org.apache.flink.table.api.java.BatchTableEnvironment;
- /**
- * Simple example that shows how the Batch SQL API is used in Java.
- *
- * <p>This example shows how to:
- * - Convert DataSets to Tables
- * - Register a Table under a name
- * - Run a SQL query on the registered Table
- */
- public class WordCountSQL {
- // *************************************************************************
- // PROGRAM
- // *************************************************************************
- public static void main(String[] args) throws Exception {
- // set up execution environment
- ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
- BatchTableEnvironment tEnv = BatchTableEnvironment.create(env);
- DataSet<WC> input = env.fromElements(
- new WC("Hello", 1),
- new WC("Ciao", 1),
- new WC("Hello", 1));
- // register the DataSet as table "WordCount"
- tEnv.registerDataSet("WordCount", input, "word, frequency");
- // run a SQL query on the Table and retrieve the result as a new Table
- Table table = tEnv.sqlQuery(
- "SELECT word, SUM(frequency) as frequency FROM WordCount GROUP BY word");
- DataSet<WC> result = tEnv.toDataSet(table, WC.class);
- result.print();
- }
- // *************************************************************************
- // USER DATA TYPES
- // *************************************************************************
- /**
- * Simple POJO containing a word and its respective count.
- */
- public static class WC {
- public String word;
- public long frequency;
- // public constructor to make it a Flink POJO
- public WC() {}
- public WC(String word, long frequency) {
- this.word = word;
- this.frequency = frequency;
- }
- @Override
- public String toString() {
- return "WC " + word + " " + frequency;
- }
- }
- }
其中,BatchTableEnvironment
- /**
- * The {@link TableEnvironment} for a Java batch {@link ExecutionEnvironment} that works
- * with {@link DataSet}s.
- *
- * <p>A TableEnvironment can be used to:
- * <ul>
- * <li>convert a {@link DataSet} to a {@link Table}</li>
- * <li>register a {@link DataSet} in the {@link TableEnvironment}'s catalog</li>
- * <li>register a {@link Table} in the {@link TableEnvironment}'s catalog</li>
- * <li>scan a registered table to obtain a {@link Table}</li>
- * <li>specify a SQL query on registered tables to obtain a {@link Table}</li>
- * <li>convert a {@link Table} into a {@link DataSet}</li>
- * <li>explain the AST and execution plan of a {@link Table}</li>
- * </ul>
- */
BatchTableSource
- /** Defines an external batch table and provides access to its data.
- *
- * @param <T> Type of the {@link DataSet} created by this {@link TableSource}.
- */
BatchTableSink
- /** Defines an external {@link TableSink} to emit a batch {@link Table}.
- *
- * @param <T> Type of {@link DataSet} that this {@link TableSink} expects and supports.
- */
1.2 基于DataStream api的sql
示例代码
- package org.apache.flink.table.examples.java;
- import org.apache.flink.streaming.api.datastream.DataStream;
- import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
- import org.apache.flink.table.api.Table;
- import org.apache.flink.table.api.java.StreamTableEnvironment;
- import java.util.Arrays;
- /**
- * Simple example for demonstrating the use of SQL on a Stream Table in Java.
- *
- * <p>This example shows how to:
- * - Convert DataStreams to Tables
- * - Register a Table under a name
- * - Run a StreamSQL query on the registered Table
- *
- */
- public class StreamSQLExample {
- // *************************************************************************
- // PROGRAM
- // *************************************************************************
- public static void main(String[] args) throws Exception {
- // set up execution environment
- StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
- StreamTableEnvironment tEnv = StreamTableEnvironment.create(env);
- DataStream<Order> orderA = env.fromCollection(Arrays.asList(
- new Order(1L, "beer", 3),
- new Order(1L, "diaper", 4),
- new Order(3L, "rubber", 2)));
- DataStream<Order> orderB = env.fromCollection(Arrays.asList(
- new Order(2L, "pen", 3),
- new Order(2L, "rubber", 3),
- new Order(4L, "beer", 1)));
- // convert DataStream to Table
- Table tableA = tEnv.fromDataStream(orderA, "user, product, amount");
- // register DataStream as Table
- tEnv.registerDataStream("OrderB", orderB, "user, product, amount");
- // union the two tables
- Table result = tEnv.sqlQuery("SELECT * FROM " + tableA + " WHERE amount > 2 UNION ALL " +
- "SELECT * FROM OrderB WHERE amount < 2");
- tEnv.toAppendStream(result, Order.class).print();
- env.execute();
- }
- // *************************************************************************
- // USER DATA TYPES
- // *************************************************************************
- /**
- * Simple POJO.
- */
- public static class Order {
- public Long user;
- public String product;
- public int amount;
- public Order() {
- }
- public Order(Long user, String product, int amount) {
- this.user = user;
- this.product = product;
- this.amount = amount;
- }
- @Override
- public String toString() {
- return "Order{" +
- "user=" + user +
- ", product='" + product + '\'' +
- ", amount=" + amount +
- '}';
- }
- }
- }
其中,StreamTableEnvironment
- /**
- * The {@link TableEnvironment} for a Java {@link StreamExecutionEnvironment} that works with
- * {@link DataStream}s.
- *
- * <p>A TableEnvironment can be used to:
- * <ul>
- * <li>convert a {@link DataStream} to a {@link Table}</li>
- * <li>register a {@link DataStream} in the {@link TableEnvironment}'s catalog</li>
- * <li>register a {@link Table} in the {@link TableEnvironment}'s catalog</li>
- * <li>scan a registered table to obtain a {@link Table}</li>
- * <li>specify a SQL query on registered tables to obtain a {@link Table}</li>
- * <li>convert a {@link Table} into a {@link DataStream}</li>
- * <li>explain the AST and execution plan of a {@link Table}</li>
- * </ul>
- */
StreamTableSource
- /** Defines an external stream table and provides read access to its data.
- *
- * @param <T> Type of the {@link DataStream} created by this {@link TableSource}.
- */
StreamTableSink
- /**
- * Defines an external stream table and provides write access to its data.
- *
- * @param <T> Type of the {@link DataStream} created by this {@link TableSink}.
- */
2. table api
示例
- package org.apache.flink.table.examples.java;
- import org.apache.flink.api.java.DataSet;
- import org.apache.flink.api.java.ExecutionEnvironment;
- import org.apache.flink.table.api.Table;
- import org.apache.flink.table.api.java.BatchTableEnvironment;
- /**
- * Simple example for demonstrating the use of the Table API for a Word Count in Java.
- *
- * <p>This example shows how to:
- * - Convert DataSets to Tables
- * - Apply group, aggregate, select, and filter operations
- */
- public class WordCountTable {
- // *************************************************************************
- // PROGRAM
- // *************************************************************************
- public static void main(String[] args) throws Exception {
- ExecutionEnvironment env = ExecutionEnvironment.createCollectionsEnvironment();
- BatchTableEnvironment tEnv = BatchTableEnvironment.create(env);
- DataSet<WC> input = env.fromElements(
- new WC("Hello", 1),
- new WC("Ciao", 1),
- new WC("Hello", 1));
- Table table = tEnv.fromDataSet(input);
- Table filtered = table
- .groupBy("word")
- .select("word, frequency.sum as frequency")
- .filter("frequency = 2");
- DataSet<WC> result = tEnv.toDataSet(filtered, WC.class);
- result.print();
- }
- // *************************************************************************
- // USER DATA TYPES
- // *************************************************************************
- /**
- * Simple POJO containing a word and its respective count.
- */
- public static class WC {
- public String word;
- public long frequency;
- // public constructor to make it a Flink POJO
- public WC() {}
- public WC(String word, long frequency) {
- this.word = word;
- this.frequency = frequency;
- }
- @Override
- public String toString() {
- return "WC " + word + " " + frequency;
- }
- }
- }
3.数据转换
3.1 DataSet与Table相互转换
DataSet-->Table
注册方式:
- // register the DataSet as table "WordCount"
- tEnv.registerDataSet("WordCount", input, "word, frequency");
转换方式:
Table table = tEnv.fromDataSet(input);
Table-->DataSet
DataSet<WC> result = tEnv.toDataSet(filtered, WC.class);
3.2 DataStream与Table相互转换
DataStream-->Table
注册方式:
- tEnv.registerDataStream("OrderB", orderB, "user, product, amount");
- 转换方式:
Table tableA = tEnv.fromDataStream(orderA, "user, product, amount");
Table-->DataStream
DataSet<WC> result = tEnv.toDataSet(filtered, WC.class);
参考资料
【1】https://ci.apache.org/projects/flink/flink-docs-release-1.8/concepts/programming-model.html
【2】Flink原理、实战与性能优化
使用flink Table &Sql api来构建批量和流式应用(1)Table的基本概念的更多相关文章
- 使用flink Table &Sql api来构建批量和流式应用(2)Table API概述
从flink的官方文档,我们知道flink的编程模型分为四层,sql层是最高层的api,Table api是中间层,DataStream/DataSet Api 是核心,stateful Stream ...
- 使用flink Table &Sql api来构建批量和流式应用(3)Flink Sql 使用
从flink的官方文档,我们知道flink的编程模型分为四层,sql层是最高层的api,Table api是中间层,DataStream/DataSet Api 是核心,stateful Stream ...
- Flink 另外一个分布式流式和批量数据处理的开源平台
Apache Flink是一个分布式流式和批量数据处理的开源平台. Flink的核心是一个流式数据流动引擎,它为数据流上面的分布式计算提供数据分发.通讯.容错.Flink包括几个使用 Flink引擎创 ...
- 8、Flink Table API & Flink Sql API
一.概述 上图是flink的分层模型,Table API 和 SQL 处于最顶端,是 Flink 提供的高级 API 操作.Flink SQL 是 Flink 实时计算为简化计算模型,降低用户使用实时 ...
- Flink table&Sql中使用Calcite
Apache Calcite是什么东东 Apache Calcite面向Hadoop新的sql引擎,它提供了标准的SQL语言.多种查询优化和连接各种数据源的能力.除此之外,Calcite还提供了OLA ...
- Demo:基于 Flink SQL 构建流式应用
Flink 1.10.0 于近期刚发布,释放了许多令人激动的新特性.尤其是 Flink SQL 模块,发展速度非常快,因此本文特意从实践的角度出发,带领大家一起探索使用 Flink SQL 如何快速构 ...
- kafka传数据到Flink存储到mysql之Flink使用SQL语句聚合数据流(设置时间窗口,EventTime)
网上没什么资料,就分享下:) 简单模式:kafka传数据到Flink存储到mysql 可以参考网站: 利用Flink stream从kafka中写数据到mysql maven依赖情况: <pro ...
- Flink Batch SQL 1.10 实践
Flink作为流批统一的计算框架,在1.10中完成了大量batch相关的增强与改进.1.10可以说是第一个成熟的生产可用的Flink Batch SQL版本,它一扫之前Dataset的羸弱,从功能和性 ...
- Flink系列之1.10版流式SQL应用
随着Flink 1.10的发布,对SQL的支持也非常强大.Flink 还提供了 MySql, Hive,ES, Kafka等连接器Connector,所以使用起来非常方便. 接下来咱们针对构建流式SQ ...
随机推荐
- C#异步委托等待句柄的使用
using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...
- windows下,Qt Creator 中javascript调试器安装并使用
最开始使用Qt Creator时,想使用断点来调试javascript代码.但在按下debug键后,却提示调试器未配置,让我比较郁闷. 好了,郁闷的是说了,咱们来说说高兴的.要Qt Creator调试 ...
- WPF常用第三方控件
NLog日志控件: Install-Package NLog.Config Mysql数据库控件: Install-Package Mysql.Data 最新版本只支持.net 4.5.2及以上版本, ...
- 向github提交本地项目
首先你需要一个github账号,所有还没有的话先去注册吧! https://github.com/ 我们使用git需要先安装git工具,这里给出下载地址,下载后一路直接安装即可: https://gi ...
- 修改用户名后TSF出现"需要本地工作区。工作区 xxx 并未驻留在本计算机上"
解决方法就是:1,打开vs下的"开发人员命令提示"2,按下面格式输入命令:tf workspaces /collection:http://192.168.0.110:8080/t ...
- ML:梯度下降(Gradient Descent)
现在我们有了假设函数和评价假设准确性的方法,现在我们需要确定假设函数中的参数了,这就是梯度下降(gradient descent)的用武之地. 梯度下降算法 不断重复以下步骤,直到收敛(repeat ...
- windows-qt 使用mingw编译c++boost并使用
一.boost是一个准标准库,相当于STL的延续和扩充,它的设计理念和STL比较接近,都是利用泛型让复用达到最大化.不过对比STL,boost更加实用.STL集中在算法部分,而boost包含了不少工具 ...
- Delphi 中 断言 Assert 用法
procedure Assert(expr : Boolean [; const msg: string]); 用法: Assert(表达式,[显示信息]); 如果为假, assert会产生一个E ...
- vc++的学习目的
vc++支持多种编程方式,从结构化的编程,面向对象编程,泛型编程,com组件编程. 我想学习vc++的原因是它更接近底层.非常的高效,希望之后用它写出非常简洁高效的代码.
- .NET程序员如何快入门Spring Boot
本篇文章将教你作为一个.NET程序员如何快入门Spring Boot.你不需要用Eclipse,也不需要用IDEA.已经习惯了VS,其他的IDE-- 但不得不说VS Code很厉害,一用就喜欢.微软给 ...