1.spark submit参数

$ ./bin/spark-submit --class path.to.your.Class --master yarn --deploy-mode cluster [options] <app jar> [app options]
Multiple versions of Spark are installed but SPARK_MAJOR_VERSION is not set
Spark1 will be picked by default
Usage: spark-submit [options] <app jar | python file> [app arguments]
Usage: spark-submit --kill [submission ID] --master [spark://...]
Usage: spark-submit --status [submission ID] --master [spark://...] Options:
--master MASTER_URL spark://host:port, mesos://host:port, yarn, or local.
--deploy-mode DEPLOY_MODE Whether to launch the driver program locally ("client") or
on one of the worker machines inside the cluster ("cluster")
(Default: client).
--class CLASS_NAME Your application's main class (for Java / Scala apps).
--name NAME A name of your application.
--jars JARS Comma-separated list of local jars to include on the driver
and executor classpaths.
--packages Comma-separated list of maven coordinates of jars to include
on the driver and executor classpaths. Will search the local
maven repo, then maven central and any additional remote
repositories given by --repositories. The format for the
coordinates should be groupId:artifactId:version.
--exclude-packages Comma-separated list of groupId:artifactId, to exclude while
resolving the dependencies provided in --packages to avoid
dependency conflicts.
--repositories Comma-separated list of additional remote repositories to
search for the maven coordinates given with --packages.
--py-files PY_FILES Comma-separated list of .zip, .egg, or .py files to place
on the PYTHONPATH for Python apps.
--files FILES Comma-separated list of files to be placed in the working
directory of each executor. --conf PROP=VALUE Arbitrary Spark configuration property.
--properties-file FILE Path to a file from which to load extra properties. If not
specified, this will look for conf/spark-defaults.conf. --driver-memory MEM Memory for driver (e.g. 1000M, 2G) (Default: 1024M).
--driver-java-options Extra Java options to pass to the driver.
--driver-library-path Extra library path entries to pass to the driver.
--driver-class-path Extra class path entries to pass to the driver. Note that
jars added with --jars are automatically included in the
classpath. --executor-memory MEM Memory per executor (e.g. 1000M, 2G) (Default: 1G). --proxy-user NAME User to impersonate when submitting the application.
This argument does not work with --principal / --keytab. --help, -h Show this help message and exit
--verbose, -v Print additional debug output
--version, Print the version of current Spark Spark standalone with cluster deploy mode only:
--driver-cores NUM Cores for driver (Default: ). Spark standalone or Mesos with cluster deploy mode only:
--supervise If given, restarts the driver on failure.
--kill SUBMISSION_ID If given, kills the driver specified.
--status SUBMISSION_ID If given, requests the status of the driver specified. Spark standalone and Mesos only:
--total-executor-cores NUM Total cores for all executors. Spark standalone and YARN only:
--executor-cores NUM Number of cores per executor. (Default: in YARN mode,
or all available cores on the worker in standalone mode) YARN-only:
--driver-cores NUM Number of cores used by the driver, only in cluster mode
(Default: ).
--queue QUEUE_NAME The YARN queue to submit to (Default: "default").
--num-executors NUM Number of executors to launch (Default: ).
--archives ARCHIVES Comma separated list of archives to be extracted into the
working directory of each executor.
--principal PRINCIPAL Principal to be used to login to KDC, while running on
secure HDFS.
--keytab KEYTAB The full path to the file that contains the keytab for the
principal specified above. This keytab will be copied to
the node running the Application Master via the Secure
Distributed Cache, for renewing the login tickets and the
delegation tokens periodically.

For example:

$ ./bin/spark-submit --class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \
--driver-memory 4g \
--executor-memory 2g \
--executor-cores \
--queue thequeue \
lib/spark-examples*.jar \

In client mode:

$ ./bin/spark-shell --master yarn --deploy-mode client

最近一直测试spark程序,对spark-submit的参数进行了调节。

通过上面图片可以看到,总共有7个节点,总共的VCores为133,总共内存为1.49TB,有3个application在运行,2个分别为spark thrift server和spark2 thrift server,1个为我提交的任务,可以看出我提交的任务占用了81个cpu VCores(1个为application master)。

提交命令:

time spark-submit --master yarn-client --driver-memory 10g --executor-memory 10g --num-executors  --class com.test.test.ByHour ~/cs0308/quickstart-SNAPSHOT.jar /test/origin/20170306_02 /test/result/

其中

--num-executors 80           80个executor(默认是2个)
--executor-memory 10g        exector内存大小(默认1g)
--driver-memory 10g          Driver程序使用内存大小

--executor-cores             每个executor使用的内核数,默认为1

发现在设置过程中运行起来还有剩余的资源,但是若把参数直接设成80以上,程序一运行就直接报错,程序刚运行时申请资源会超过设置参数,然后就会下降80(设置参数)+1个cpu,1个为Application Master。这个是跑了1.2T大小的gz文件,跑完为4.6T的txt文件。
同样的程序在第二天跑的时候,发现老报sockettimeoutexception,重启集群(没有程序在运行)后,再一次运行同样的命令发现正常了(用的HDP的集群)。 具体spark-submit参数说明: https://my.oschina.net/u/140462/blog/519409

Spark on YARN资源申请的更多相关文章

  1. Apache Spark源码走读之8 -- Spark on Yarn

    欢迎转载,转载请注明出处,徽沪一郎. 概要 Hadoop2中的Yarn是一个分布式计算资源的管理平台,由于其有极好的模型抽象,非常有可能成为分布式计算资源管理的事实标准.其主要职责将是分布式计算集群的 ...

  2. Spark On Yarn的两种模式yarn-cluster和yarn-client深度剖析

    Spark On Yarn的优势 每个Spark executor作为一个YARN容器(container)运行.Spark可以使得多个Tasks在同一个容器(container)里面运行 1. Sp ...

  3. <YARN><MRv2><Spark on YARN>

    MRv1 VS MRv2 MRv1: - JobTracker: 资源管理 & 作业控制- 每个作业由一个JobInProgress控制,每个任务由一个TaskInProgress控制.由于每 ...

  4. 基础概念 之 Spark on Yarn

    先抛出问题:Spark on Yarn有cluster和client两种模式,它们有什么区别? 用Jupyter写Spark时,只能使用client模式,为什么? 写一篇文章,搞清楚 Spark on ...

  5. Spark on YARN的部署

    Spark on YARN的原理就是依靠yarn来调度Spark,比默认的Spark运行模式性能要好的多,前提是首先部署好hadoop HDFS并且运行在yarn上,然后就可以开始部署spark on ...

  6. 配置Spark on YARN集群内存

    参考原文:http://blog.javachen.com/2015/06/09/memory-in-spark-on-yarn.html?utm_source=tuicool 运行文件有几个G大,默 ...

  7. Spark on Yarn 学习(一)

    最近看到明风的关于数据挖掘平台下实用Spark和Yarn来做推荐的PPT,感觉很赞,现在基于大数据和快速计算方面技术的发展很快,随着Apache基金会上发布的一个个项目,感觉真的新技术将会不断出现在大 ...

  8. Spark on Yarn:任务提交参数配置

    当在YARN上运行Spark作业,每个Spark executor作为一个YARN容器运行.Spark可以使得多个Tasks在同一个容器里面运行. 以下参数配置为例子: spark-submit -- ...

  9. 运行 Spark on YARN

    运行 Spark on YARN Spark 0.6.0 以上的版本添加了在yarn上执行spark application的功能支持,并在之后的版本中持续的 改进.关于本文的内容是翻译官网的内容,大 ...

随机推荐

  1. 了解Activity

    Android中的activity全都归属于task管理 .task 是多个 activity 的集合,这些 activity 按照启动顺序排队存入一个栈(即“back stack”).android ...

  2. QT5.1编译后的安装目录问题(硬路径问题)

    这个是我的编译参数:configure -ltcg -confirm-license -opensource -platform win32-msvc2010 -debug-and-release - ...

  3. const char*和const char[]怎么识别?

    #include <iostream> using namespace std; template<typename T> class _ischararray_; templ ...

  4. delphi 在多线程中使用 CreateOleObject 导致失败(一定要使用CoInitialize和CoUninitialize,举例查询WMI)

    原帖地址 http://bbs.csdn.net/topics/390481350 解决办法 procedure DisplayVideoInfo; var wmi, objs, obj : OleV ...

  5. SqlServer 动态SQL(存储过程)中Like 传入参数无正确返回值的问题

    最近在做项目时,以动态Sql进行Like语句查询时发现应该返回的结果却一直返回空,后来发现是写法错误: 错误SQL: DECLARE @0 varchar(20) SET @0 = 'XA-LZ' S ...

  6. Win7 访问 数据库 慢

    不让TCP/IP调谐拖累网速 在Windows Server 2008工作环境中,下载访问网络中大容量的文件内容时,我们有时会感觉到网络连接速度非常缓慢,严重的时候还会出现不能访问的现象.遭遇这类故障 ...

  7. .NET平台简介

    前言: 看到一个名词:搜商(SQ),还挺有趣.讲的是在互联网时代,怎么能够快速找到自己所需信息或资源,成为一种能力,并将其提升到类似智商.情商的概念.在以后工作过程中,尽量提高自己获取.辨别.处理信息 ...

  8. React Router 4.0 + webpack 实现组件按需加载

    网上关于React Router 4.0的按需加载文章有很多,大致的思路都一样,但是其实具体实现起来却要根据自己的实际情况来定,这里主要介绍一下我的实现方式. 主要方式是通过Route组件的rende ...

  9. 【设计模式】结构型01代理模式(Proxy Pattern)

    代理模式(Proxy Pattern) 定义:顾名思义,增加中间层,为其他对象提供一种代理以控制对这个对象的访问.核心在于代理二字. 1.和适配器模式的区别:适配器模式主要改变所考虑对象的接口,而代理 ...

  10. php5.3之命名空间

    在php5.3之后,php像c++那样新 命名空间. 1.在同一个文件中不能实例化同一个名字相同的类和同时包含两个不同目录下的相同文件,中包含相同的函数和常量.为了解决这个问题,因此引入了命名空间. ...