题目

P5385 [Cnoi2019]须臾幻境

做法

考虑一条边\((u,v)\)是否\([L,R]\)中的贡献:\([L,R]\)中第一条位于\(u,v\)链的边,则减少了一个联通块

实现:\(LCT\)维护最小边,产生环则删除最小边,再替换\((\)和这题差不多\()\)

得出删除序列,建好主席树,直接查询\([L,R]\)中小于\(L\)的数量即可

Code

#include<bits/stdc++.h>
typedef int LL;
inline LL Read(){
LL x(0),f(1); char c=getchar();
while(c<'0' || c>'9'){
if(c=='-') f=-1; c=getchar();
}
while(c>='0' && c<='9'){
x=(x<<3)+(x<<1)+c-'0'; c=getchar();
}return x*f;
}
const LL maxn=1e6+9,inf=0x3f3f3f3f;
LL n,m,q,seed;
LL ear[maxn];
namespace LCT{
struct node{
LL u,v;
}e[maxn];
LL son[maxn][2],fa[maxn],mi[maxn],mi_n[maxn],val[maxn],sta[maxn],r[maxn];
inline LL Notroot(LL x){
return son[fa[x]][0]==x || son[fa[x]][1]==x;
}
inline void Update(LL x){
LL lt(son[x][0]),rt(son[x][1]);
mi[x]=std::min(mi[lt],mi[rt]);
if(mi[x]==mi[lt]){
mi_n[x]=mi_n[lt];
}else{
mi_n[x]=mi_n[rt];
}
if(val[x]<=mi[x]){
mi[x]=val[x]; mi_n[x]=x;
}
}
inline void Pushr(LL x){
std::swap(son[x][0],son[x][1]); r[x]^=1;
}
inline void Pushdown(LL x){
if(r[x]){
if(son[x][0]) Pushr(son[x][0]);
if(son[x][1]) Pushr(son[x][1]);
r[x]=0;
}
}
inline void Rotate(LL x){
LL y(fa[x]),z(fa[y]),lz(son[y][1]==x);
if(Notroot(y)) son[z][son[z][1]==y]=x;
son[y][lz]=son[x][lz^1]; fa[son[y][lz]]=y;
son[x][lz^1]=y; fa[y]=x;fa[x]=z;
Update(y); Update(x);
}
inline void Splay(LL x){
LL y(x),tot(0);
sta[++tot]=y;
while(Notroot(y)) sta[++tot]=y=fa[y];
while(tot) Pushdown(sta[tot--]);
while(Notroot(x)){
y=fa[x];
if(Notroot(y)){
LL z(fa[y]);
if((son[y][0]==x)^(son[z][0]==y)) Rotate(x); else Rotate(y);
}Rotate(x);
}
}
inline void Access(LL x){
for(LL y=0;x;y=x,x=fa[x]){
Splay(x); son[x][1]=y; Update(x);
}
}
inline void Makeroot(LL x){
Access(x); Splay(x); Pushr(x);
}
inline void Split(LL x,LL y){
Makeroot(x); Access(y); Splay(y);
}
inline LL Query(LL x,LL y){
Split(x,y); return mi_n[y];
}
inline LL Find(LL x){
Access(x); Splay(x);
while(son[x][0]){
Pushdown(x); x=son[x][0];
}Splay(x);
return x;
}
inline void Cut(LL x,LL y){
Split(x,y); son[y][0]=fa[x]=0; Update(y);//这里也可不更新,因为在查询时整条链都会更新
}
inline void Link(LL x,LL y){
Makeroot(x); fa[x]=y;
}
inline void Solve(){
for(LL i=0;i<=n;++i) val[i]=mi[i]=inf,mi_n[i]=i;
LL tot=n;
for(LL i=1;i<=m;++i){
LL u(Read()),v(Read());
e[i]=(node){u,v};
if(u==v){
ear[i]=i; continue;
}else if(Find(u)==Find(v)){
LL t(Query(u,v)),x(val[t]); ear[i]=x;
Cut(e[x].u,t); Cut(e[x].v,t);
}
++tot; mi[tot]=val[tot]=i; mi_n[tot]=tot;
Link(u,tot); Link(v,tot);
}
}
}
namespace Sgt{
LL nod;
LL size[maxn*20],son[maxn*20][2],root[maxn];
void Update(LL pre,LL &now,LL l,LL r,LL v){
now=++nod; size[now]=size[pre]+1;
if(l==r) return;
LL mid(l+r>>1);
if(v<=mid){
Update(son[pre][0],son[now][0],l,mid,v);
son[now][1]=son[pre][1];
}else{
Update(son[pre][1],son[now][1],mid+1,r,v);
son[now][0]=son[pre][0];
}
}
LL Query(LL pre,LL now,LL l,LL r,LL v){
if(l==r) return size[now]-size[pre];
LL mid(l+r>>1);
if(mid<v) return Query(son[pre][1],son[now][1],mid+1,r,v)+size[son[now][0]]-size[son[pre][0]];
else return Query(son[pre][0],son[now][0],l,mid,v);
}
inline void Solve(){
for(LL i=1;i<=m;++i) Update(root[i-1],root[i],0,m,ear[i]);
LL lst(0);
while(q--){
LL l(Read()),r(Read());
if(seed>0)
l=1ll*(l+1ll*seed*lst%m)%m+1,
r=1ll*(r+1ll*seed*lst%m)%m+1;
if(l>r) std::swap(l,r);
printf("%d\n",lst=n-Query(root[l-1],root[r],0,m,l-1));
}
}
}
int main(){
n=Read(); m=Read(); q=Read(); seed=Read();
LCT::Solve();
Sgt::Solve();
return 0;
}

P5385 [Cnoi2019]须臾幻境(LCT+主席树,思维题)的更多相关文章

  1. 题解 洛谷 P5385 【[Cnoi2019]须臾幻境】

    首先我们知道 \(n\) 个点的树有 \(n-1\) 条边,因此对于森林来说,其点数减边数即为树的个数.那么对于普通的图,求出其任意一个生成树森林,森林中树的个数即为原图中连通块的个数,也就是点数减边 ...

  2. BZOJ 3514: Codechef MARCH14 GERALD07加强版 [LCT 主席树 kruskal]

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1312  Solved: 501 ...

  3. 洛谷P4180 [Beijing2010组队]次小生成树Tree(最小生成树,LCT,主席树,倍增LCA,倍增,树链剖分)

    洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小 ...

  4. BZOJ 3514: Codechef MARCH14 GERALD07加强版(LCT + 主席树)

    题意 \(N\) 个点 \(M\) 条边的无向图,询问保留图中编号在 \([l,r]\) 的边的时候图中的联通块个数. \(K\) 次询问强制在线. \(1\le N,M,K \le 200,000\ ...

  5. bzoj3514(LCT+主席树)

    题目描述 N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. 题解 对于一个截止时间来说,越晚的变越好. 所以我们可以维护一颗以边的序号为关键字的最大生成树,然后用主席树维 ...

  6. 【BZOJ3514】Codechef MARCH14 GERALD07加强版 LCT+主席树

    题解: 还是比较简单的 首先我们的思路是 确定起点 然后之后贪心的选择边(也就是越靠前越希望选) 我们发现我们只需要将起点从后向前枚举 然后用lct维护连通性 因为强制在线,所以用主席树记录状态就可以 ...

  7. 洛谷P4180 [BJWC2010]次小生成树(最小生成树,LCT,主席树,倍增LCA,倍增,树链剖分)

    洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小 ...

  8. BZOJ3514:GERALD07加强版(LCT,主席树)

    Description N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. Input 第一行四个整数N.M.K.type,代表点数.边数.询问数以及询问是否加密. 接下来 ...

  9. [BZOJ3514]CodeChef MARCH14 GERALD07加强版(LCT+主席树)

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 2177  Solved: 834 ...

随机推荐

  1. android 常用库的地址--dialog,recycler

    android 弹出框     https://github.com/li-xiaojun/XPopup android  RecyclerViewAdapter     https://github ...

  2. HTML的基本概念

    HTML语言是一种纯文本类.依靠解释的方式执行的标记语言,它是Internet上用于编写网页的主要语言.用HTML编写的超文本文件称为HTML文件,也是标准的纯文本文件. 当今构成网页文档主要是用HT ...

  3. Android Jetpack组件 - ViewModel,LiveData使用以及原理

    本文涉及的源码版本如下: com.android.support:appcompat-v7:27.1.1 android.arch.lifecycle:extensions:1.1.1 android ...

  4. vs code 调试设置

    首先vs code 安装插件:Debugger for Chrome vscode 设置:点击调试按钮,然后调试面板界面再点击设置按钮,添加一个配置,选择环境为:chrome编辑器自动生成一个laun ...

  5. MySQL Replication--修复从库上单个数据库的数据

    问题描述 由于运维失误,从库未及时设置read_only,导致从库上某库数据被修改,由于整个实例数据量较大,重做成本较高,而该数据库数据较少,因此考虑如何修复该数据库的数据. 操作前提 1.复制使用位 ...

  6. Kubernetes+Federation打造跨多云管理服务

    Kubernetes日渐普及,在公有云.私有云等多个环境中部署kubernetes集群已是常规做法,而随着环境的复杂多样和集群数量增长,如何高效地管理这些集群成为新的问题.于是跨多云管理服务应运而生. ...

  7. k8s安装之nginx.yaml

    这里两个nginx.一个是用来测试最简单的集群的. 另一个是用来作grafana,prometheus,dashboard前端安全展示的. 简单版 apiVersion: apps/v1 kind: ...

  8. linux系统编程之信号(一)

    今天起,开始新的知识的学习,对于上个系列进程的学习还差一个理论上的总结,这个会下次补回来,以便通过实践之后,再用理论将其巩固一下,好了,话不多说,开始进入这个主题的学习----信号,很重要,但不是太容 ...

  9. Spring -13 -Spring 中常用注解总结

    1.@Component 创建类对象,相当于配置<bean/> 2.@Service 与@Component 功能相同. 2.1都写在ServiceImpl 类上. 3.@Reposito ...

  10. Spring4- 04-Spring简易整合Mybatis -导入jar包/ 正常编写pojo/ 编写spring 配置文件

    笔记要点&出错分析与总结 POJO(Plain Ordinary Java Object)简单的Java对象,实际就是普通JavaBeans,工程组织   (AirportService为机场 ...