一、gfile模块是什么

tf.gfile模块的主要角色是:
1.提供一个接近Python文件对象的API,以及
2.提供基于TensorFlow C ++ FileSystem API的实现。

C ++ FileSystem API支持多种文件系统实现,包括本地文件,谷歌云存储(以gs://开头)和HDFS(以hdfs:/开头)。 TensorFlow将它们导出为tf.gfile,以便我们可以使用这些实现来保存和加载检查点,编写TensorBoard log以及访问训练数据(以及其他用途)。但是,如果所有文件都是本地文件,则可以使用常规的Python文件API而不会造成任何问题。

二、gfile API介绍

下面将分别介绍每一个gfile API!

2-1)tf.gfile.Copy(oldpath, newpath, overwrite=False)

拷贝源文件并创建目标文件,无返回,其形参说明如下:

oldpath:带路径名字的拷贝源文件;

newpath:带路径名字的拷贝目标文件;

overwrite:目标文件已经存在时是否要覆盖,默认为false,如果目标文件已经存在则会报错

2-2)tf.gfile.MkDir(dirname)

创建一个目录,dirname为目录名字,无返回。

2-3)tf.gfile.Remove(filename)

删除文件,filename即文件名,无返回。

2-4)tf.gfile.DeleteRecursively(dirname)

递归删除所有目录及其文件,dirname即目录名,无返回。

2-5)tf.gfile.Exists(filename)

判断目录或文件是否存在,filename可为目录路径或带文件名的路径,有该目录则返回True,否则False。

2-6)tf.gfile.Glob(filename)

查找匹配pattern的文件并以列表的形式返回,filename可以是一个具体的文件名,也可以是包含通配符的正则表达式。

2-7)tf.gfile.IsDirectory(dirname)

判断所给目录是否存在,如果存在则返回True,否则返回False,dirname是目录名。

2-8)tf.gfile.ListDirectory(dirname)

罗列dirname目录下的所有文件并以列表形式返回,dirname必须是目录名。

2-9)tf.gfile.MakeDirs(dirname)

以递归方式建立父目录及其子目录,如果目录已存在且是可覆盖则会创建成功,否则报错,无返回。

2-10)tf.gfile.Rename(oldname, newname, overwrite=False)

重命名或移动一个文件或目录,无返回,其形参说明如下:

oldname:旧目录或旧文件;

newname:新目录或新文件;

overwrite:默认为false,如果新目录或新文件已经存在则会报错,否则重命名或移动成功。

2-11)tf.gfile.Stat(filename)

返回目录的统计数据,该函数会返回FileStatistics数据结构,以dir(tf.gfile.Stat(filename))获取返回数据的属性如下:

2-12)tf.gfile.Walk(top, in_order=True)

递归获取目录信息生成器,top是目录名,in_order默认为True指示顺序遍历目录,否则将无序遍历,每次生成返回如下格式信息(dirname, [subdirname, subdirname, ...], [filename, filename, ...])。

2-13)tf.gfile.GFile(filename, mode)

获取文本操作句柄,类似于python提供的文本操作open()函数,filename是要打开的文件名,mode是以何种方式去读写,将会返回一个文本操作句柄。

tf.gfile.Open()是该接口的同名,可任意使用其中一个!

2-14)tf.gfile.FastGFile(filename, mode)

该函数与tf.gfile.GFile的差别仅仅在于“无阻塞”,即该函数会无阻赛以较快的方式获取文本操作句柄。

举例两个作用:

pb文件保存:

    output_graph_def = convert_variables_to_constants(sess, sess.graph_def, ["output2"])
    with tf.gfile.FastGFile('./models/emotion_resnet_graph.pb',mode='wb') as f:
        f.write(output_graph_def.SerializeToString())

图像编码解码:

tf.gfile.FastGFile(path,decodestyle) 
函数功能:实现对图片的读取。 
函数参数:(1)path:图片所在路径 (2)decodestyle:图片的解码方式。(‘r’:UTF-8编码; ‘rb’:非UTF-8编码)

import matplotlib.pyplot as plt
import tensorflow as tf

#tf.gfileGFile()函数:读取图像 
image_jpg = tf.gfile.FastGFile('dog.jpg','rb').read() 
image_png = tf.gfile.FastGFile('lizard.png','rb').read()

with tf.Session() as sess:

image_jpg = tf.image.decode_jpeg(image_jpg) #图像解码
    print(sess.run(image_jpg))#打印解码后的图像(即为一个三维矩阵[w,h,3])
    image_jpg = tf.image.convert_image_dtype(image_jpg,dtype=tf.uint8) #改变图像数据类型

image_png = tf.image.decode_png(image_png)
    print(sess.run(image_jpg))
    image_png = tf.image.convert_image_dtype(image_png,dtype=tf.uint8)

plt.figure(1) #图像显示 
    plt.imshow(image_jpg.eval()) 
    plt.figure(2) 
    plt.imshow(image_png.eval())

tensorflow API _ 6 (tf.gfile)的更多相关文章

  1. tensorflow API _ 2 (tf.app.flags.FLAGS)

    tf.app.flags.FLAGS 的使用,主要是在用命令行执行程序时,需要传些参数,代码如下:新建一个名为:app_flags.py 的文件. #coding:utf-8  import tens ...

  2. tensorflow API _ 3 (tf.train.polynomial_decay)

    学习率的三种调整方式:固定的,指数的,多项式的 def _configure_learning_rate(num_samples_per_epoch, global_step): "&quo ...

  3. tensorflow API _ 4 (Logging with tensorflow)

    TensorFlow用五个不同级别的日志信息.为了升序的严重性,他们是调试DEBUG,信息INFO,警告WARN,错误ERROR和致命FATAL的.当你配置日志记录在任何级别,TensorFlow将输 ...

  4. tensorflow API _ 5 (tensorflow.summary)

    tensorflow的可视化是使用summary和tensorboard合作完成的. 基本用法 首先明确一点,summary也是op. 输出网络结构 with tf.Session() as sess ...

  5. tensorflow API _ 1 (control_flow_ops.cond)

    该函数用来控制程序执行流,相当于if-else了import tensorflow as tffrom tensorflow.python.ops import control_flow_ops a ...

  6. tensorflow API _ 4 (优化器配置)

    """Configures the optimizer used for training. Args: learning_rate: A scalar or `Tens ...

  7. Tensorflow API 学习(1)-tf.slice()

    slice()函数原型为: tf.slice(input_, begin, size, name=None) 函数有4个参数: 1,input_ :图片的矩阵输入格式. 2,begin :开始截取的位 ...

  8. tf.gfile

    一.功能和目的 tf.gfile模块定义在tensorflow/python/platform/gfile.py,但其源代码实现主要位于tensorflow/tensorflow/python/lib ...

  9. TensorFlow API 汉化

    TensorFlow API 汉化 模块:tf   定义于tensorflow/__init__.py. 将所有公共TensorFlow接口引入此模块. 模块 app module:通用入口点脚本. ...

随机推荐

  1. 【剑指offer】1+….+n,不能使用相关关键字

    题目描述 求1+2+3+...+n,要求不能使用乘除法.for.while.if.else.switch.case等关键字及条件判断语句(A?B:C). 分析:可以使用递归! class Soluti ...

  2. c#学习笔记1-简单算法

    using System; namespace Demo { class Studycs { public static void Main(String[] args) { // String re ...

  3. python算法介绍:希尔排序

    python作为一种新的语言,在很多功能自然要比Java要好一些,也容易让人接受,而且不管您是成年人还是少儿都可以学习这个语言,今天就为大家来分享一个python算法教程之希尔排序,现在我们就来看看吧 ...

  4. Oracle的字串處理

    Oracle的字串處理 除了寫程式之外,資料庫的應用也是蠻重要的,而SQL語法,用法大致相同,但各公司所出的資料庫還是有所差別,而ORACLE SQL給了相當多的函數應用,下面列了一些函法的名稱和用法 ...

  5. .net Dapper 学习系列(2) ---Dapper进阶

    目录 写在前面 前期准备 Dapper 单表批量添加 在Dapper 多表查询 在Dapper 调用存储过程 在Dapper 使用QueryMultiple进行多表查询 在Dapper 使用事务进行多 ...

  6. 2019-07-25 php错误级别及设置方法

    在php的开发过程里,我们总是会有一系列的错误警告,这些错误警告在我们开发的过程中是十分需要的,因为它能够提示我们在哪里出现了错误,以便修改和维护.但在网站开发结束投入使用时,这些报错我们就要尽量避免 ...

  7. js数组【续】(相关方法)

    一.数组的栈,队列方法[调用这些方法原数组会发生改变]var arr = [2,3,4,5,6];1.栈 LIFO (Last-In-First-Out)a.push() 可接受任意类型的参数,将它们 ...

  8. Vue学习之npm常用命令及参数小结(十四)

    NPM几个常用命令和参数的意思: npm install packagename 安装模块如不指定版本号 默认会安装最新的版本 npm install packagename 0.0.1 安装指定版本 ...

  9. jq对象才能使用jq方法,$(".a").eq(0) 和 $(”.a“)[0]

    <a class="a"></a> <a class="a"></a> <a class="a& ...

  10. ResourceDictionary文件排序方法

    默认生成的ResourceDictionary文件是根据主键的hashcode排序生成的,如果想按主键排序生成是不可能的. 可以使用Xml的处理方法来生成ResourceDictionary文件. 1 ...