Tensorflow细节-P199-数据集
数据集的基本使用方法
import tempfile
import tensorflow as tf
input_data = [1, 2, 3, 5, 8] # 这不是列表吗,为什么书里叫数组
dataset = tf.data.Dataset.from_tensor_slices(input_data) # 这是构建Dataset内存中的数据
# 定义迭代器。
iterator = dataset.make_one_shot_iterator()
# get_next() 返回代表一个输入数据的张量。
x = iterator.get_next()
y = x * x
with tf.Session() as sess:
for i in range(len(input_data)):
print(sess.run(y))
先生成两个文件:file1,file2
import tempfile
import tensorflow as tf
# 创建文本文件作为本例的输入。
with open("./test1.txt", "w") as file:
file.write("File1, line1.\n")
file.write("File1, line2.\n")
with open("./test2.txt", "w") as file:
file.write("File2, line1.\n")
file.write("File2, line2.\n")
再读取两个文件并放到一个dataset,然后输出(注意iterator。get_next()获得的是张量)
import tempfile
import tensorflow as tf
# 从文本文件创建数据集。这里可以提供多个文件。
input_files = ["./text1.txt", "./text2.txt"]
dataset = tf.data.TextLineDataset(input_files) # 注意,注意,这里换了,
# tf.data.Dataset.from_tensor_slices(input_data) 是读取数变为张量
# 定义迭代器。
iterator = dataset.make_one_shot_iterator()
# 这里get_next()返回一个字符串类型的张量,代表文件中的一行。
# 注意,张量,张量,凡是iterator出来的都是张量
x = iterator.get_next()
with tf.Session() as sess:
for i in range(4):
print(sess.run(x))
TFRecoard读取:
import tempfile
import tensorflow as tf
# 以下解析TFRecord文件里的数据。读取文件为本章第一节创建的文件
def parser(record):
features = tf.parse_single_example(
record,
features={
'image_raw': tf.FixedLenFeature([], tf.string),
'pixels': tf.FixedLenFeature([], tf.int64),
'label': tf.FixedLenFeature([], tf.int64)
}
)
decoded_images = tf.decode_raw(features['image_raw'], tf.uint8)
retyped_images = tf.cast(decoded_images, tf.float32)
images = tf.reshape(retyped_images, [784])
labels = tf.cast(features['label'], tf.int32)
pixels = tf.cast(features['pixels'], tf.int32)
return images, labels, pixels
# 从TFRecord文件创建数据集。这里可以提供多个文件。
input_files = ["output.tfrecords"]
dataset = tf.data.TFRecordDataset(input_files) # 看,看,看,这次又换了
# map()函数表示对数据集中的每一条数据进行调用解析方法。
dataset = dataset.map(parser) # 这是一个很常用的套路,要学会, 表示对dataset中的数据进行parser操作
# 定义遍历数据集的迭代器。
iterator = dataset.make_one_shot_iterator()
# 读取数据,可用于进一步计算
image, label, _ = iterator.get_next()
with tf.Session() as sess:
for i in range(10):
x, y = sess.run([image, label])
print(y)
结果为:
下面是用到placeholder的操作,因为是placeholder所以要initializer,所以使用了iterator = dataset.make_initializable_iterator()
还有一个点,在Session下要用 sess.run(iterator. feed_dict={input_files: ["output.tfrecords"]})
import tempfile
import tensorflow as tf
# 以下为使用initializable_iterator来动态初始化数据集
def parser(record):
features = tf.parse_single_example(
record,
features={
'image_raw':tf.FixedLenFeature([],tf.string),
'pixels':tf.FixedLenFeature([],tf.int64),
'label':tf.FixedLenFeature([],tf.int64)
})
decoded_images = tf.decode_raw(features['image_raw'],tf.uint8)
retyped_images = tf.cast(decoded_images, tf.float32)
images = tf.reshape(retyped_images, [784])
labels = tf.cast(features['label'],tf.int32)
#pixels = tf.cast(features['pixels'],tf.int32)
return images, labels
# 从TFRecord文件创建数据集,具体文件路径是一个placeholder,稍后再提供具体路径。
input_files = tf.placeholder(tf.string)
dataset = tf.data.TFRecordDataset(input_files)
dataset = dataset.map(parser)
# 定义遍历dataset的initializable_iterator。
# 因为前面的例子使用了最简单的one_shot_iterator来遍历数据集,数据集的所有参数必须是确定的,
# 如果需要placeholder来初始化数据集, 那就需要用到initializable_iterator
iterator = dataset.make_initializable_iterator()
image, label = iterator.get_next()
with tf.Session() as sess:
# 首先初始化iterator,并给出input_files的值。
sess.run(iterator.initializer,
feed_dict={input_files: ["output.tfrecords"]})
# 遍历所有数据一个epoch。当遍历结束时,程序会抛出OutOfRangeError。
while True:
try:
x, y = sess.run([image, label])
except tf.errors.OutOfRangeError:
break
Tensorflow细节-P199-数据集的更多相关文章
- 一个简单的TensorFlow可视化MNIST数据集识别程序
下面是TensorFlow可视化MNIST数据集识别程序,可视化内容是,TensorFlow计算图,表(loss, 直方图, 标准差(stddev)) # -*- coding: utf-8 -*- ...
- [PocketFlow]解决TensorFLow在COCO数据集上训练挂起无输出的bug
1. 引言 因项目要求,需要在PocketFlow中添加一套PeleeNet-SSD和COCO的API,具体为在datasets文件夹下添加coco_dataset.py, 在nets下添加pelee ...
- 学习笔记TF056:TensorFlow MNIST,数据集、分类、可视化
MNIST(Mixed National Institute of Standards and Technology)http://yann.lecun.com/exdb/mnist/ ,入门级计算机 ...
- 基于TensorFlow的MNIST数据集的实验
一.MNIST实验内容 MNIST的实验比较简单,可以直接通过下面的程序加上程序上的部分注释就能很好的理解了,后面在完善具体的相关的数学理论知识,先记录在这里: 代码如下所示: import tens ...
- 深度学习原理与框架-Tensorflow基本操作-mnist数据集的逻辑回归 1.tf.matmul(点乘操作) 2.tf.equal(对应位置是否相等) 3.tf.cast(将布尔类型转换为数值类型) 4.tf.argmax(返回最大值的索引) 5.tf.nn.softmax(计算softmax概率值) 6.tf.train.GradientDescentOptimizer(损失值梯度下降器)
1. tf.matmul(X, w) # 进行点乘操作 参数说明:X,w都表示输入的数据, 2.tf.equal(x, y) # 比较两个数据对应位置的数是否相等,返回值为True,或者False 参 ...
- TensorFlow 训练MNIST数据集(2)—— 多层神经网络
在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率.这次换一种神经网络(多层神经网络)来进行训练和测试. 1.获取MNIST数据 MNIST数据集只要一行代码 ...
- TensorFlow训练MNIST数据集(1) —— softmax 单层神经网络
1.MNIST数据集简介 首先通过下面两行代码获取到TensorFlow内置的MNIST数据集: from tensorflow.examples.tutorials.mnist import inp ...
- 基于 tensorflow 的 mnist 数据集预测
1. tensorflow 基本使用方法 2. mnist 数据集简介与预处理 3. 聚类算法模型 4. 使用卷积神经网络进行特征生成 5. 训练网络模型生成结果 how to install ten ...
- TensorFlow 下 mnist 数据集的操作及可视化
from tensorflow.examples.tutorials.mnist import input_data 首先需要连网下载数据集: mnsit = input_data.read_data ...
- Tensorflow细节-P202-数据集的高层操作
本节是对上节的补充 import tempfile import tensorflow as tf # 输入数据使用本章第一节(1. TFRecord样例程序.ipynb)生成的训练和测试数据. tr ...
随机推荐
- 《TCP/IP - OSI和TCP/IP分层模型》
一:分层模型 - - OSI 更强调:通信协议必要的功能是什么 - TCP/IP 更强调:在计算机上实现协议应该开发哪种程序 二:为什么会产生协议标准化 (分层模型的产生)? - 由于各个厂商生产 ...
- 长乐培训Day4
T1 矩阵 题目 [题目描述] 从前有个 n×m 的矩阵,初始时每个位置均为 0.你需要依次执行 q 个操作,每个操作会指定一行或一列,然后将该行或该列的所有元素全部赋为一个相同的值. 输出操作完成后 ...
- Python脚本-自动下载安装
#coding=utf-8 import os import sys if os.getuid() == 0: pass else: print 'no' sys.exit(1) version = ...
- 不一样的go语言-go缺少的语言特性
相信很多从其他语言转向go语言的人,或者是几乎所有初学go语言的人(我相信目前还没有学校将go作为教学语言,所以未来的IT工程师的第一语言都不会是go),都会在学习的过程中将go与自己的第一语言. ...
- 【scratch3.0教程】1.1 走进编程世界
第一章 认识Scratch 第1课 走进编程世界 大家认识下图中的人物吗? 史蒂夫·乔布斯 比尔·盖茨 ●Elon Musk,特斯拉.Space X火箭公司创始人,9岁学习 ...
- python MySQL 插入Elasticsearch
一.需求分析 注意: 本环境使用 elasticsearch 7.0版本开发,切勿低于此版本 mysql 表结构 有一张表,记录的数据特别的多,需要将7天前的记录,插入到Elasticsearch中, ...
- Dubbo学习摘录(零)
节点角色说明: Provider:暴露服务的服务提供方: Consumer:调用远程服务的服务消费方: Registry:服务注册与发现的注册中心: Monitor: 统计服务的调用次数和调用时间: ...
- java之初识hibernate
1. 使用jdbc进行数据库操作:获取数据库连接,编写sql语句,执行sql操作,关闭连接. 比如:每次创建连接,释放资源----使的执行效率降低: 解决方案:连接池. 编写sql语句动作----简单 ...
- 视频质量评估 之 VMAF
VMAF 方法: 基本想法: 面对不同特征的源内容.失真类型,以及扭曲程度,每个基本指标各有优劣.通过使用机器学习算法(支持向量机(Support Vector Machine,SVM)回归因子)将基 ...
- kubernetes第四章--架构