Empirical Analysis of Beam Search Performance Degradation in Neural Sequence Models

 2019-06-13 10:28:44

Paper: [abs] [Download PDF][Supplementary PDF] Eldan Cohen, Christopher Beck ; PMLR 97:1290-1299

1. Background and Motivation:

Beam search 是一种常用在时序任务中解码算法,如:NLP 中的语言翻译,Image Captioning 等。不同于一般的贪婪搜索策略,该算法会始终维持相同的搜索宽度,最终会输出该宽度的多个搜索结果。就是因为这种天然的优势,该算法被广泛的应用于各种时序任务中。但是,大量的研究表明,beam search 存在如下的不足:“随着 width” 的增加,最终的效果也会不断降低,即:增加 width,不能提升效果,该算法只能在特定的较小的 width 条件下,才会 work 的很好。

针对上述问题,作者在本文中在多个任务上进行了大量的实验,来研究这个问题:machine translation,abstract summarization, and image captioning。作者在这些实验的基础上,提出了一种可解释的模型,该模型基于 search discrepancies(搜索差异性) 的概念,然后基于该差异性的分布进行了经验性的研究。主要贡献如下:

1). 本文表明增加 beam width 将会导致 solution 在早期有较大的不一致性 (discrepancies);这些序列通常会有较低的评价得分,从而导致最终的性能衰减。

2). 本文所提出的 explanatory model generalizes the previouly observed "copies" and predictions that repeat training set targets and accounts for more of the degraded predictions.

3).  本文表明对 beam search 进行修改,使其不考虑 large search discrepancies 可以有效的缓解性能衰减。

2. Neural Sequence Models

在神经序列模型中,通过充分的搜索以求得一个全局最优序列几乎是不可能的。贪心算法会在每一个时刻,选择一个最优的候选,使得序列局部最优,但是可能最终得到的仅仅是一个局部次优的序列。Beam search 将每一个时刻的可能序列宽度拓展为 B,这个 B 称为 beam width。正式的来说,beam search candidate 通过如下的方式进行更新:

本文将 search discrepancy 定义为:extending a partial sequence with a token that is not the most probable one. 正式的来说,一个序列 y 在时刻 t 有一个 search discrepancy,如果其满足如下的条件:

我们将最可能的 token 和 选择的 token 的差异性,取 log,记为:

为了说明该 discrepancy gap 是如何计算的,我们给出了上图1。具有最高条件概率候选的 discrepancy gap 为 0,其他候选之间的 gap 就是其 log 概率的距离。

3. Discrepancy-Constrained Beam Search:

本文评价了两种类似 trick 的方法来约束 beam search,都是考虑到较大的搜索差异。

Discrepancy Gap

给定阈值 M,我们修改 beam search 来仅仅考虑搜索差异小于等于 M 的候选。正式的来说,我们修改公式 1,使其包含这一约束:

Beam Candidate Rank

给定阈值 N,我们修改 $y_t$ 使其在每一个 beam 中仅仅包含 top N one-token extensions。注意到,beam search 仍然保持 top B candidates,然而在每一个 beam 中,其不会考虑超过 N 的候选。

4. Experiments

作者的实验表明,当考虑到作者提到的不一致性约束时,在增加 beam width 的时候,就不存在精度下降的问题了。但是这个表格貌似也反映了,beam width 设置的太大,有些情况下,并不会明显提升精度,反而有可能降低。到底该不该设置较大的 beam width,还是应该调调参数,试试才知道哇。

==

Empirical Analysis of Beam Search Performance Degradation in Neural Sequence Models的更多相关文章

  1. Beam Search(集束搜索/束搜索)

    找遍百度也没有找到关于Beam Search的详细解释,只有一些比较泛泛的讲解,于是有了这篇博文. 首先给出wiki地址:http://en.wikipedia.org/wiki/Beam_searc ...

  2. 关于Beam Search

    Wiki定义:In computer science, beam search is a heuristic search algorithm that explores a graph by exp ...

  3. [0.0]Analysis of Baidu search engine

    Rencently, my two teammates and I is doing a project, a simplified Chinese search engine for childre ...

  4. 【NLP】选择目标序列:贪心搜索和Beam search

    构建seq2seq模型,并训练完成后,我们只要将源句子输入进训练好的模型,执行一次前向传播就能得到目标句子,但是值得注意的是: seq2seq模型的decoder部分实际上相当于一个语言模型,相比于R ...

  5. 集束搜索beam search和贪心搜索greedy search

    贪心搜索(greedy search) 贪心搜索最为简单,直接选择每个输出的最大概率,直到出现终结符或最大句子长度. 集束搜索(beam search) 集束搜索可以认为是维特比算法的贪心形式,在维特 ...

  6. 关于 Image Caption 中测试时用到的 beam search算法

    关于beam search 之前组会中没讲清楚的 beam search,这里给一个案例来说明这种搜索算法. 在 Image Caption的测试阶段,为了得到输出的语句,一般会选用两种搜索方式,一种 ...

  7. 实现nlp文本生成中的beam search解码器

    自然语言处理任务,比如caption generation(图片描述文本生成).机器翻译中,都需要进行词或者字符序列的生成.常见于seq2seq模型或者RNNLM模型中. 这篇博文主要介绍文本生成解码 ...

  8. Beam Search

    Q: 什么是Beam Search? 它在NLP中的什么场景里会⽤到? 传统的广度优先策略能够找到最优的路径,但是在搜索空间非常大的情况下,内存占用是指数级增长,很容易造成内存溢出,因此提出了beam ...

  9. beam search 和 greedy search

    贪心搜索(greedy search): 贪心搜索最为简单,直接选择每个输出的最大概率,直到出现终结符或最大句子长度. 集束搜索(beam search): 集束搜索可以认为是维特比算法的贪心形式,在 ...

随机推荐

  1. nodejs SSL Error: CERT_UNTRUSTED while using npm command 错误

    SSH 使用错误,其实我们关掉HTTPS就好了 npm config set strict-ssl false 或者 npm config set registry="http://regi ...

  2. 【数据泵】EXPDP导出表结构

    [数据泵]EXPDP导出表结构(真实案例) BLOG文档结构图         因工作需要现需要把一个生产库下的元数据(表定义,索引定义,函数定义,包定义,存储过程)导出到测试库上,本来以为很简单的, ...

  3. DELL R720针对磁盘故障面板信息误报解决

    现象: 面板报警信息显示 PDR1101 fault detected on drive 0. Check drive... 经查资料是磁盘故障的原因,而r720的idrac似乎我们没有安装,我不能通 ...

  4. 无法将“ng”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。 通用解决方案

    1.找到你安装的路径 以@angular/cli 为例 (找到 ng.cmd 这个指令的具体位置) 2. 右键 这台电脑 添加路径到 系统变量的 Path中, 如下图 3.关闭所有的 cmd,并重新打 ...

  5. 动态渲染左侧菜单栏 :menu tree 动态渲染

    其中后端代码不包含权限控制,同时支持二级(无子菜单) 和 三级菜单(无子菜单). 1.layui前端代码:(其他前端框架实现方法通用,不过需要修改js中append对应标签元素即可) <div ...

  6. css3卡片阴影效果

    1.css3阴影用到的知识点:阴影box-shadow和插入:after before HTML部分: <!DOCTYPE html> <html> <head> ...

  7. HashMap扩容死循环问题

    原文:https://blog.csdn.net/Leon_cx/article/details/81911223 下面我们来模拟一下多线程场景下扩容会出现的问题: 假设在扩容过程中旧hash桶中有一 ...

  8. xpath+多进程爬取八零电子书百合之恋分类下所有小说。

    代码 # 需要的库 import requests from lxml import etree from multiprocessing import Pool import os # 请求头 he ...

  9. TCN时间卷积网络——解决LSTM的并发问题

    TCN是指时间卷积网络,一种新型的可以用来解决时间序列预测的算法.在这一两年中已有多篇论文提出,但是普遍认为下篇论文是TCN的开端. 论文名称: An Empirical Evaluation of ...

  10. 最小圆覆盖(洛谷 P1742 增量法)

    题意:给定N个点,求最小圆覆盖的圆心喝半径.保留10位小数点. N<1e5: 思路:因为精度要求较高,而且N比较大,所以三分套三分的复杂度耶比较高,而且容易出错. 然是写下增量法吧. 伪代码加深 ...