seaborn---调色板
一、样式控制
1.set([context,style,palette,font,...])
一步设定美学参数。
2.axes_style([style,rc])
返回参数字典,用于绘图的美学风格。
3.set_style([style,rc])
设定地块的审美风格。
4.plotting_context([context,font_scale,rc])
返回参数dict以缩放图形的元素。
5.set_context([context,font_scale,rc])
设置绘图上下文参数。
6.set_color_codes([调色板])
更改matplotlib颜色缩写词的解释方式。
7.reset_defaults()
将所有RC参数恢复为默认设置。
8.reset_orig()
将所有RC参数恢复为原始设置(尊重自定义rc)。
二、调色板
调色板分为三类:
- Sequential:按顺序渐变的。 - Light colours for low data, dark for high data
- Diverging:彼此之间差异变化较大的。 - Light colours for mid-range data, low and high contrasting dark colours
- Qualitative:这个用于最大程度地显示不同类之间的差别。 - Colours designed to give maximum visual difference between classes
1.color_palette()
seaborn.color_palette(palette=None, n_colors = None, desat = None)
- palette:None,string或sequence,可选,默认有6种主题:deep,muted, pastel, bright, dark, colorblind
- n_colors:颜色个数
- desat:每种颜色去饱和的比例
返回:
- palette:RGB元组列表
举例:
import seaborn as sns sns.palplot(sns.color_palette())
sns.palplot(sns.color_palette('deep',8))
sns.palplot(sns.color_palette('muted',8))
sns.palplot(sns.color_palette('pastel',8))
sns.palplot(sns.color_palette('bright',8))
sns.palplot(sns.color_palette('dark',8))
sns.palplot(sns.color_palette('colorblind',8))
其他颜色风格:Accent,Blues,BrBG
import seaborn as sns #风格内容:Accent,Blues,BrBG等等
#风格颜色转换(不是所有颜色都可以反转):Blues/Blues_r
#分组颜色设置 -'Paried'
sns.palplot(sns.color_palette('Paired',8))
sns.palplot(sns.color_palette('Accent',8))
sns.palplot(sns.color_palette('Blues',8))
sns.palplot(sns.color_palette('Blues_r',8))
sns.palplot(sns.color_palette('BrBG',8))
2. set_palette():
3.husl_palette():设置亮度,饱和度
seaborn.husl_palette(n_colors=6, h=0.01, s=0.9, l=0.65)
- n_colors:颜色个数
- h:第一个色调
- s:饱和度
- l:亮度
可用方法:
husl_palette([n_colors, h, s, l])
hsl_palette([n_colors, h, l, s])
举例:
sns.palplot(sns.hls_palette(8 , l = .8, s = .5))
4.cubehelix_palette():按照线性增长计算,设置颜色
seaborn.cubehelix_palette(n_colors=6, start=0, rot=0.4, gamma=1.0, hue=0.8, light=0.85, dark=0.15, reverse=False, as_cmap=False)
- n_colors:颜色个数
- start :值区间在0-3,开始颜色
- rot:颜色旋转角度
- gamma:颜色伽马值,越大颜色越暗
- dark,light:值区间0-1,颜色越深
- reverse:布尔值,默认为False,由浅到深
sns.palplot(sns.cubehelix_palette(8, gamma = 2))
sns.palplot(sns.cubehelix_palette(8, start = .5, rot = -.75))
sns.palplot(sns.cubehelix_palette(8, start = 2, rot = 0, dark = 0, light = .95, reverse = True))
5.dark_palette()、light_palette():深色/浅色调色板
seaborn.dark_palette(color,n_colors = 6,reverse = False,as_cmap = False,input ='rgb' )
参数:
- color:高值的颜色
- n_colors:颜色个数
- reverse:默认为False
- as_cmap:如果为True,则返回matplotlib colormap;为False,则返回list
- input:{'rgb','hls','husl','xkcd'}
返回:palette或cmap:seaborn调色板或matplotlib colormap,类似列表的颜色对象作为RGB元组,或者可以将连续值映射到颜色的颜色图对象,具体取决于as_cmap
参数的值 。
dark_palette(color[, n_colors, reverse, ...]) #制作一个从黑暗到混合的顺序调色板
light_palette(color[, n_colors, reverse, ...])
举例:
sns.palplot(sns.light_palette('green')) #按照green做浅色调色盘
sns.palplot(sns.color_palette('Greens')) #cmap为Greens风格 sns.palplot(sns.dark_palette('red', reverse = False)) #按照blue做深色调色盘
#reverse ---> 转置颜色 sns.palplot(sns.light_palette('red',reverse=False))
6.diverging_palette创建分散颜色
seaborn.diverging_palette(h_neg,h_pos, s=75, l=50, sep=10, n=6, center='light', as_cmap=False)
参数:
- h_neg,h_pos:[0,359]
定位在负数与正数色调范围 - s:[0,100],可选
定位饱和度 - l:[0,100],可选
定位亮度 - n:int,可选
如果不返回cmap,将返回颜色数字 - center:{“light”,“dark”},可选
调色板中心是亮还是暗 - as_cmap:布尔,可选
如果为真,返回matplotlib colormap 对象;否则返回一个颜色列表
返回:
- palette or cmap:seaborn color palette 或者matplotlib colormap
颜色的类表对象(RGB元组),或者colormap能够映射连续的值到颜色,决定于 as_cmap 参数
举例:
sns.palplot(sns.diverging_palette(200, 20, l=40, n=4))
用分散颜色制作热力图
plt.figure(figsize = (8,6))
x = np.arange(25).reshape(5,5)
cmap = sns.diverging_palette(200,20,sep=20,as_cmap=True)
sns.heatmap(x, cmap=cmap)#热力图
效果如下:
7.blend_palette()
8.xkcd_palette():命名颜色
xkcd包含了一套众包努力的针对随机RGB色的命名。产生了954个可以随时通过xdcd_rgb字典中调用的命名颜色
colors = ["windows blue", "amber", "greyish", "faded green", "dusty purple"]
sns.palplot(sns.xkcd_palette(colors))
plt.plot([0, 1], [0, 1], sns.xkcd_rgb["pale red"], lw=1)
plt.plot([0, 1], [0, 2], sns.xkcd_rgb["medium green"], lw=3)
plt.plot([0, 1], [0, 3], sns.xkcd_rgb["denim blue"], lw=3)
9.crayon_palette()
10.mpl_palette()
三、调色板小部件
1.choose_colorbrewer_palette(data_type [,as_cmap])
从ColorBrewer集中选择一个调色板
2.choose_cubehelix_palette([as_cmap])
启动交互式小部件以创建顺序cubehelix调色板
3.choose_light_palette([input,as_cmap])
启动交互式小部件以创建轻型顺序调色板
4.choose_dark_palette([input,as_cmap])
启动交互式小部件以创建暗序连接调色板
5.choose_diverging_palette([as_cmap])
启动交互式小部件以选择不同的调色板
四、实用功能
1.load_dataset(name [,cache,data_home])
从在线存储库加载数据集(需要互联网)
2.despine([fig,ax,top,right,left,bottom,...])
从图中移除顶部和右侧脊柱。
3.desaturate(颜色,道具)
将颜色的饱和度通道减少百分之几
4.saturate(颜色)
返回具有相同色调的完全饱和的颜色
5.set_hls_values(颜色[,h,l,s])
独立操作颜色的h,l或s通道
参考文献:
seaborn---调色板的更多相关文章
- seaborn基础整理
seaborn是基于matplotlib的更高级的做图工具,下面主要针对以下几个部分进行整理: 第一部分:https://douzujun.github.io/page/%E6%95%B0%E6%8D ...
- Python人工智能学习笔记
Python教程 Python 教程 Python 简介 Python 环境搭建 Python 中文编码 Python 基础语法 Python 变量类型 Python 运算符 Python 条件语句 ...
- seaborn使用(样式管理)
seaborn使用(样式管理) Seaborn是一个在Python中制作具有吸引力和丰富信息的统计图形的库.它建立在matplotlib之上,并与PyData堆栈紧密集成,包括支持scipy和pand ...
- seaborn库
首先找到Anaconda Prompt命令行,下载seaborn库 ,命令 pip install seaborn 1.风格设置 import seaborn as sns import num ...
- Python数据可视化-seaborn库之countplot
在Python数据可视化中,seaborn较好的提供了图形的一些可视化功效. seaborn官方文档见链接:http://seaborn.pydata.org/api.html countplot是s ...
- Python图表数据可视化Seaborn:2. 分类数据可视化-分类散点图|分布图(箱型图|小提琴图|LV图表)|统计图(柱状图|折线图)
1. 分类数据可视化 - 分类散点图 stripplot( ) / swarmplot( ) sns.stripplot(x="day",y="total_bill&qu ...
- Python图表数据可视化Seaborn:1. 风格| 分布数据可视化-直方图| 密度图| 散点图
conda install seaborn 是安装到jupyter那个环境的 1. 整体风格设置 对图表整体颜色.比例等进行风格设置,包括颜色色板等调用系统风格进行数据可视化 set() / se ...
- Python数据可视化-seaborn
详细介绍可以看seaborn官方API和example galler. 1 set_style( ) set( ) set_style( )是用来设置主题的,Seaborn有五个预设好的主题: d ...
- Seaborn图形可视化库
一.绘图 1)快速生成图 import numpy as np import matplotlib.pyplot as plt def sinplot(filp=): x = np.linspace( ...
随机推荐
- 接口性能指标TP90
TP90,即,Top percentile 90, 前90%的意思. 这是一个常用于网站性能监控的指标.tp90是一个时间值,例如tp90=3ms,其含义是90%的请求,在3ms之内,可以得到响应. ...
- Lab7:同步互斥
并发进程的正确性 独立进程 不和其他进程共享资源或状态 确定性 -> 输入状态决定结果 可重现 -> 能够重现起始条件 调度顺序不重要 并发进程 在多个进程间有资源共享 不确定性 不可重现 ...
- Tomcat对取消post长度限制
1.Tomcat 默认的post参数的最大大小为2M, 当超过时将会出错,可以配置maxPostSize参数来改变大小. 从 apache-tomcat-7.0.63 开始,参数 maxPostSiz ...
- es6 Decorator修饰器
1.类的修饰: 修饰器(Decorator)函数,用来修改类的行为.修饰器是一个对类进行处理的函数.修饰器函数的第一个参数,就是所要修饰的目标类. @testable class MyTestable ...
- spark 基本操作整理
关于spark 的详细操作请参照spark官网 scala 版本:2.11.8 1.添加spark maven依赖,如需访问hdfs,则添加hdfs依赖 groupId = org.apache.sp ...
- windows 安装 scrapy (python3.7)
今天想要用scrapy爬取数据,想到原来刷过机没有这个库了就重新安装了一遍 安装scrapy 需要的东西 https://pan.baidu.com/s/1kuLvGQBG8tMTCY3WDLuU ...
- Java并发编程: CountDownLatch、CyclicBarrier和 Semaphore
java 1.5提供了一些非常有用的辅助类来帮助并发编程,比如CountDownLatch,CyclicBarrier和Semaphore. 1.CountDownLatch –主线程阻塞等待,最后完 ...
- vim中常用折叠命令
最常用3个折叠命令 .反复打开关闭折叠:za (意思就是,当光标处折叠处于打开状态,za关闭之,当光标处折叠关闭状态,打开之) .打开全部折叠:zR .关闭全部折叠:zM 小试折叠: :set fdm ...
- HTML+CSS+JS综合练习(动态验证版)
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 豆瓣Top250
""" 爬取豆瓣电影TOP250 - 完整示例代码 """ import codecs import requests from bs4 i ...