1145 Hashing - Average Search Time (25 分)
 

The task of this problem is simple: insert a sequence of distinct positive integers into a hash table first. Then try to find another sequence of integer keys from the table and output the average search time (the number of comparisons made to find whether or not the key is in the table). The hash function is defined to be ( where TSize is the maximum size of the hash table. Quadratic probing (with positive increments only) is used to solve the collisions.

Note that the table size is better to be prime. If the maximum size given by the user is not prime, you must re-define the table size to be the smallest prime number which is larger than the size given by the user.

Input Specification:

Each input file contains one test case. For each case, the first line contains 3 positive numbers: MSize, N, and M, which are the user-defined table size, the number of input numbers, and the number of keys to be found, respectively. All the three numbers are no more than 1. Then N distinct positive integers are given in the next line, followed by M positive integer keys in the next line. All the numbers in a line are separated by a space and are no more than 1.

Output Specification:

For each test case, in case it is impossible to insert some number, print in a line X cannot be inserted. where X is the input number. Finally print in a line the average search time for all the M keys, accurate up to 1 decimal place.

Sample Input:

4 5 4
10 6 4 15 11
11 4 15 2

Sample Output:

15 cannot be inserted.
2.8

题意:

给定一个序列,用平方探测法解决哈希冲突,然后给出m个数字,如果这个数字不能够被插入就输出”X cannot be inserted.”,然后输出这m个数字的平均查找时间

题解:

找到大于tsize的最小的素数为真正的tsize,然后建立一个tsize长度的数组。首先用平方探测法插入数字a,每次pos = (a + j * j) % tsize,j是从0~tsize-1的数字,如果当前位置可以插入就将a赋值给v[pos],如果一次都没有能够插入成功就输出”X cannot be inserted.”。其次计算平均查找时间,每次计算pos = (a + j * j) % tsize,其中j <= tsize,如果v[pos]处正是a则查找到了,则退出循环,如果v[pos]处不存在数字表示没查找到,那么也要退出循环。每次查找的时候,退出循环之前的j就是这个数字的查找长度。最后ans除以m得到平均查找时间然后输出~

而我看不懂题,也没听说过Quadratic probing平方探测法解决哈希冲突,看来要多扩充知识点了。

  哈希函数构造方法:H(key) = key % TSize (除留余数法)
  处理冲突方法:Hi = (H(key) + di) % TSize (开放地址发——二次方探测再散列)

  其中di为 1*1 , -1*1 , 2*2 , -2*2 , ··· k*k , -k*k (k <= MSize-1)

  题目中提到 with positive increments only 所以我们只需要考虑正增量即可。

看了很多人本题的题解,我发现有些说要前一次 [0,tsize),但后面计数是要  [0,tsize],虽然这样25分也都拿到了,但是,a%t = (a+t*t)%t 不是应该相等的吗?如果相等,又为什么计数时的那个循环里把等号去了就过不了了呢?网上有些的确时两边都统一[0,tsize),但是在计数的时候,没有找到的要多加一次。到底两种思考方式哪个更合理呢?

AC代码:

#include<bits/stdc++.h>
using namespace std;
bool prime(int x){
if(x<=) return false;
for(int j=;j*j<=x;j++){
if(x%j==) return false;
}
return true;
}
int main(){
int t,m,n,x,f;
cin>>t>>m>>n;
while(!prime(t)) t++;
vector<int> a(t);
for(int i=;i<=m;i++){
cin>>x;
f=;
for(int j=;j<t;j++){//j是[0,t)
int y=(x+j*j)%t;
if(a[y]==||a[y]==x){
a[y]=x;
f=;
break;
}
}
if(!f) printf("%d cannot be inserted.\n", x);
}
f=;
for(int i=;i<=n;i++){
int x;
cin>>x;
for(int j=;j<=t;j++){//j是[0,t]
f++;
int y=(x+j*j)%t;
if(a[y]==||a[y]==x){
break;
}
}
}
printf("%.1f",f*1.0/n);
return ;
}

另一种正确代码:

#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
bool isPrime(int num) {
if (num < ) return false;
for (int i = ; i *i<=num; i++) {
if (num % i == ) return false;
}
return true;
} int msize, n, m, a, table[];
int main() {
memset(table, -, sizeof(table));
scanf("%d%d%d", &msize, &n, &m); while (isPrime(msize) == false) msize++; for (int i = ; i < n; i++) {
scanf("%d", &a); bool founded = false;
for (int j = ; j < msize; j++) {
int d = j * j;
int tid = (a + d) % msize;
if (table[tid] == -) {
founded = true;
table[tid] = a;
break;
}
}
if (founded == false) {
printf("%d cannot be inserted.\n", a);
}
}
int tot = ; for (int i = ; i < m; i++) {
scanf("%d", &a);
int t = ;
bool founded = false;
for (int j = ; j < msize; j++) {//这边是j从0-msize
tot++;
int d = j * j;
int tid = (a + d) % msize;
if (table[tid] == a || table[tid] == -) { // 找到或者不存在
founded = true;
break;
}
}
if(founded ==false) {//没有找到要多加一次
tot++;
}
} printf("%.1f\n", tot*1.0/m); return ;
}

PAT 甲级 1145 Hashing - Average Search Time (25 分)(读不懂题,也没听说过平方探测法解决哈希冲突。。。感觉题目也有点问题)的更多相关文章

  1. PAT 甲级 1145 Hashing - Average Search Time

    https://pintia.cn/problem-sets/994805342720868352/problems/994805343236767744 The task of this probl ...

  2. PAT Advanced 1145 Hashing – Average Search Time (25) [哈希映射,哈希表,平⽅探测法]

    题目 The task of this problem is simple: insert a sequence of distinct positive integers into a hash t ...

  3. 1145. Hashing - Average Search Time (25)

    The task of this problem is simple: insert a sequence of distinct positive integers into a hash tabl ...

  4. PAT 甲级 1055 The World's Richest (25 分)(简单题,要用printf和scanf,否则超时,string 的输入输出要注意)

    1055 The World's Richest (25 分)   Forbes magazine publishes every year its list of billionaires base ...

  5. [PAT] 1143 Lowest Common Ancestor(30 分)1145 Hashing - Average Search Time(25 分)

    1145 Hashing - Average Search Time(25 分)The task of this problem is simple: insert a sequence of dis ...

  6. PAT 1145 Hashing - Average Search Time [hash][难]

    1145 Hashing - Average Search Time (25 分) The task of this problem is simple: insert a sequence of d ...

  7. PAT甲级:1036 Boys vs Girls (25分)

    PAT甲级:1036 Boys vs Girls (25分) 题干 This time you are asked to tell the difference between the lowest ...

  8. PAT甲级:1089 Insert or Merge (25分)

    PAT甲级:1089 Insert or Merge (25分) 题干 According to Wikipedia: Insertion sort iterates, consuming one i ...

  9. 1145. Hashing - Average Search Time

      The task of this problem is simple: insert a sequence of distinct positive integers into a hash ta ...

随机推荐

  1. springboot开发人员工具(自动重启及相关的配置)

    导入依赖: <dependencies> <dependency> <groupId>org.springframework.boot</groupId> ...

  2. Spring asm

    Spring 获取类的详细信息,以及方法时候,是通过asm 字节码进行获取的,在平时中我们也可以依赖spring 进行处理我们的类 //可以获取类的详细信息,比如父类上谁,类上面的注解 ,是否上接口 ...

  3. 洛谷 P816 忠诚 题解

    每日一题 day28 打卡 Analysis 这道题用线段树维护区间最小值很简单,因为没有修改所以连lazy_tag都不用,但是这道题可以用树状数组维护区间最小值,非常骚气. 线段树代码: #incl ...

  4. 计蒜客模拟赛 #5 (B 题) 动态点分治+线段树

    虽然是裸的换根dp,但是为了在联赛前锻炼码力,强行上了点分树+线段树. 写完+调完总共花了不到 $50$ 分钟,感觉还行. code: #include <bits/stdc++.h> # ...

  5. learning java Runtime 类 获取内存及处理器核数信息

    var rt = Runtime.getRuntime(); System.*)); System.*)); System.*)); System.out.println(rt.availablePr ...

  6. Win32 Error

    一.Win32错误 也就是Win32子系统产生的错误.当我们在自己的代码里调用Windows系统的API函数,系统执行API内部代码,当API内部代码出现错误,会将预先定义好的错误代码写到调用这个AP ...

  7. mysql 函数表

    Name Description ABS() Return the absolute value ACOS() Return the arc cosine ADDDATE() Add time val ...

  8. 使用Android的日志工具Log

    Android中的日志工具类是Log,这个类中提供了5个方法来供我们打印日志 1.Log.v()用于打印那些最为琐碎的,意义最小的日志信息.对应级别verbose,是Android日志里面级别最低的一 ...

  9. git用ssh方式下载代码

    1.运行Git Bash客户端,执行ls ~/.ssh; 如果列出下图这两个rsa文件,那应该就不需要配置ssh key了,如果不放心就将这几个文件删掉,重新生成. 文件的默认目录:C:\Users\ ...

  10. jquery中$.get()如何让跨域请求携带cookie?

    在这个get请求前面加上这个就好了~~~~