1145 Hashing - Average Search Time (25 分)
 

The task of this problem is simple: insert a sequence of distinct positive integers into a hash table first. Then try to find another sequence of integer keys from the table and output the average search time (the number of comparisons made to find whether or not the key is in the table). The hash function is defined to be ( where TSize is the maximum size of the hash table. Quadratic probing (with positive increments only) is used to solve the collisions.

Note that the table size is better to be prime. If the maximum size given by the user is not prime, you must re-define the table size to be the smallest prime number which is larger than the size given by the user.

Input Specification:

Each input file contains one test case. For each case, the first line contains 3 positive numbers: MSize, N, and M, which are the user-defined table size, the number of input numbers, and the number of keys to be found, respectively. All the three numbers are no more than 1. Then N distinct positive integers are given in the next line, followed by M positive integer keys in the next line. All the numbers in a line are separated by a space and are no more than 1.

Output Specification:

For each test case, in case it is impossible to insert some number, print in a line X cannot be inserted. where X is the input number. Finally print in a line the average search time for all the M keys, accurate up to 1 decimal place.

Sample Input:

4 5 4
10 6 4 15 11
11 4 15 2

Sample Output:

15 cannot be inserted.
2.8

题意:

给定一个序列,用平方探测法解决哈希冲突,然后给出m个数字,如果这个数字不能够被插入就输出”X cannot be inserted.”,然后输出这m个数字的平均查找时间

题解:

找到大于tsize的最小的素数为真正的tsize,然后建立一个tsize长度的数组。首先用平方探测法插入数字a,每次pos = (a + j * j) % tsize,j是从0~tsize-1的数字,如果当前位置可以插入就将a赋值给v[pos],如果一次都没有能够插入成功就输出”X cannot be inserted.”。其次计算平均查找时间,每次计算pos = (a + j * j) % tsize,其中j <= tsize,如果v[pos]处正是a则查找到了,则退出循环,如果v[pos]处不存在数字表示没查找到,那么也要退出循环。每次查找的时候,退出循环之前的j就是这个数字的查找长度。最后ans除以m得到平均查找时间然后输出~

而我看不懂题,也没听说过Quadratic probing平方探测法解决哈希冲突,看来要多扩充知识点了。

  哈希函数构造方法:H(key) = key % TSize (除留余数法)
  处理冲突方法:Hi = (H(key) + di) % TSize (开放地址发——二次方探测再散列)

  其中di为 1*1 , -1*1 , 2*2 , -2*2 , ··· k*k , -k*k (k <= MSize-1)

  题目中提到 with positive increments only 所以我们只需要考虑正增量即可。

看了很多人本题的题解,我发现有些说要前一次 [0,tsize),但后面计数是要  [0,tsize],虽然这样25分也都拿到了,但是,a%t = (a+t*t)%t 不是应该相等的吗?如果相等,又为什么计数时的那个循环里把等号去了就过不了了呢?网上有些的确时两边都统一[0,tsize),但是在计数的时候,没有找到的要多加一次。到底两种思考方式哪个更合理呢?

AC代码:

#include<bits/stdc++.h>
using namespace std;
bool prime(int x){
if(x<=) return false;
for(int j=;j*j<=x;j++){
if(x%j==) return false;
}
return true;
}
int main(){
int t,m,n,x,f;
cin>>t>>m>>n;
while(!prime(t)) t++;
vector<int> a(t);
for(int i=;i<=m;i++){
cin>>x;
f=;
for(int j=;j<t;j++){//j是[0,t)
int y=(x+j*j)%t;
if(a[y]==||a[y]==x){
a[y]=x;
f=;
break;
}
}
if(!f) printf("%d cannot be inserted.\n", x);
}
f=;
for(int i=;i<=n;i++){
int x;
cin>>x;
for(int j=;j<=t;j++){//j是[0,t]
f++;
int y=(x+j*j)%t;
if(a[y]==||a[y]==x){
break;
}
}
}
printf("%.1f",f*1.0/n);
return ;
}

另一种正确代码:

#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
bool isPrime(int num) {
if (num < ) return false;
for (int i = ; i *i<=num; i++) {
if (num % i == ) return false;
}
return true;
} int msize, n, m, a, table[];
int main() {
memset(table, -, sizeof(table));
scanf("%d%d%d", &msize, &n, &m); while (isPrime(msize) == false) msize++; for (int i = ; i < n; i++) {
scanf("%d", &a); bool founded = false;
for (int j = ; j < msize; j++) {
int d = j * j;
int tid = (a + d) % msize;
if (table[tid] == -) {
founded = true;
table[tid] = a;
break;
}
}
if (founded == false) {
printf("%d cannot be inserted.\n", a);
}
}
int tot = ; for (int i = ; i < m; i++) {
scanf("%d", &a);
int t = ;
bool founded = false;
for (int j = ; j < msize; j++) {//这边是j从0-msize
tot++;
int d = j * j;
int tid = (a + d) % msize;
if (table[tid] == a || table[tid] == -) { // 找到或者不存在
founded = true;
break;
}
}
if(founded ==false) {//没有找到要多加一次
tot++;
}
} printf("%.1f\n", tot*1.0/m); return ;
}

PAT 甲级 1145 Hashing - Average Search Time (25 分)(读不懂题,也没听说过平方探测法解决哈希冲突。。。感觉题目也有点问题)的更多相关文章

  1. PAT 甲级 1145 Hashing - Average Search Time

    https://pintia.cn/problem-sets/994805342720868352/problems/994805343236767744 The task of this probl ...

  2. PAT Advanced 1145 Hashing – Average Search Time (25) [哈希映射,哈希表,平⽅探测法]

    题目 The task of this problem is simple: insert a sequence of distinct positive integers into a hash t ...

  3. 1145. Hashing - Average Search Time (25)

    The task of this problem is simple: insert a sequence of distinct positive integers into a hash tabl ...

  4. PAT 甲级 1055 The World's Richest (25 分)(简单题,要用printf和scanf,否则超时,string 的输入输出要注意)

    1055 The World's Richest (25 分)   Forbes magazine publishes every year its list of billionaires base ...

  5. [PAT] 1143 Lowest Common Ancestor(30 分)1145 Hashing - Average Search Time(25 分)

    1145 Hashing - Average Search Time(25 分)The task of this problem is simple: insert a sequence of dis ...

  6. PAT 1145 Hashing - Average Search Time [hash][难]

    1145 Hashing - Average Search Time (25 分) The task of this problem is simple: insert a sequence of d ...

  7. PAT甲级:1036 Boys vs Girls (25分)

    PAT甲级:1036 Boys vs Girls (25分) 题干 This time you are asked to tell the difference between the lowest ...

  8. PAT甲级:1089 Insert or Merge (25分)

    PAT甲级:1089 Insert or Merge (25分) 题干 According to Wikipedia: Insertion sort iterates, consuming one i ...

  9. 1145. Hashing - Average Search Time

      The task of this problem is simple: insert a sequence of distinct positive integers into a hash ta ...

随机推荐

  1. 关于jquery的事件委托-bind,live,delegate,on的区别发展

    1.bind()方法 (只能给已经存在的元素上绑定事件) 只能给调用它的时候已经存在的元素绑定事件,不能给未来新增的元素绑定事件. $('ul li').bind('click', function( ...

  2. drf框架 - 解析模块 | 异常模块 | 响应模块

    解析模块 为什么要配置解析模块 1)drf给我们提供了多种解析数据包方式的解析类 2)我们可以通过配置,来控制前台提交的哪些格式的数据后台在解析,哪些数据不解析 3)全局配置就是针对每一个视图类,局部 ...

  3. C++数组排序泛型算法

    //数组排序泛型算法 #include <vector> #include <iostream> #include <algorithm> //内置泛型算法头文件 ...

  4. Mysql 为什么不建议在 MySQL 中使用 UTF-8?

    最近我遇到了一个bug,我试着通过Rails在以“utf8”编码的MariaDB中保存一个UTF-8字符串,然后出现了一个离奇的错误: Incorrect string value: ‘😃 &l ...

  5. (尚013)Vue的生命周期

    三个阶段: 一.初始化显示; 二:更新显示 三.死亡 每一个阶段都对应生命周期的回调函数(也叫勾子函数) 生命周期图示: 1. 2.test013.html <!DOCTYPE html> ...

  6. asp.net+ tinymce粘贴word

    公司做的项目需要用到粘贴Word功能.就是将word内容一键粘贴到网页编辑器(在线富文本编辑器)中.Chrome+IE默认支持粘贴剪切板中的图片,但是我要粘贴的文章存在word里面,图片多达数十张,我 ...

  7. Luogu P3489 [POI2009]WIE-Hexer 最短路

    https://www.luogu.org/problemnew/show/P3489 普通的最短路,不过我觉得这个复杂度按道理来说边数不应该是m*2^13吗,不知道是数据比较水还是实际上能证明复杂度 ...

  8. 如何使用ArcGIS Pro发布自定义打印服务

    我们知道可以通过ArcGIS Map来发布自定义打印服务.从ArcGIS Enterprise 10.6.1版本起,打印服务的功能更加完善了,改进点包括: 支持打印矢量切片服务 改进了智能制图和颜色透 ...

  9. [golang]Go内嵌静态资源go-bindata的安装及使用

    使用 Go 开发应用的时候,有时会遇到需要读取静态资源的情况.比如开发 Web 应用,程序需要加载模板文件生成输出的 HTML.在程序部署的时候,除了发布应用可执行文件外,还需要发布依赖的静态资源文件 ...

  10. OSPF外部实验详解