1、实时同步

 对强一致要求比较高的,应采用实时同步方案,即查询缓存查询不到再从DB查询,保存到缓存;

     更新缓存时,先更新数据库,再将缓存的设置过期(建议不要去更新缓存内容,直接设置缓存过期)。

 

   为什么不去更新缓存内容,而是设置缓存过期呢?

   答:我们先来了解两个概念

 

1.1. 缓存穿透

      缓存穿透是指查询一个数据库中一定不存在的数据,由于缓存是不命中时需要从数据库中查询,查不到数据则不写入缓存,这就将导致这个不存在的数据每次请求都要到数据库中查询,造成缓存穿透。

你可以通俗的理解,直接把缓存穿透了,没有利用到缓存。。。

举例:

If(redis存在此key){

查询redis值

}else{

查询数据库,如果能查到数据,就写入到redis中

}

这一段代码逻辑就会造成缓存穿透的恶果。。

你想,假设这个查询数据库中永远没有值,那么这个redis中这个key是不是就不会创建,那么代码就永远只走查询数据库这段代码,跟redis没关系了。。

      解决缓存穿透很简单,就是数据库查询不到也要缓存结果,不过缓存结果赋值为空而已,但它的过期时间会很短,最长不超过五分钟。

If(redis存在此key){

Var redisValue=查询redis值

返回值

}else{

查询数据库.

If(能查到数据){

就写入到redis中

}else{

如果查询不到,也写到redis中,只不过值是空值

}

}

要注意的点:

第一,空值做了缓存,意味着缓存层中存了更多的键,需要更多的内存空间 ( 如果是攻击,问题更严重 ),比较有效的方法是针对这类数据设置一个较短的过期时间,让其自动剔除。

第二,缓存层和存储层的数据会有一段时间窗口的不一致,可能会对业务有一定影响。例如过期时间设置为 5分钟,如果此时存储层添加了这个数据,那此段时间就会出现缓存层和存储层数据的不一致,此时可以利用消息系统或者其他方式清除掉缓存层中的空对象。

第三,Insert时需要事先移除要查询的key,否则即便DB中有值也查询不到(当然也可以设置空缓存的过期时间)

1.2. 缓存雪崩

如果缓存集中在一段时间内失效,发生大量的缓存穿透,所有的查询都落在数据库上,造成了缓存雪崩。

这个没有完美解决办法,但可以分析用户行为,尽量让失效时间点均匀分布。大多数系统设计者考虑用加锁或者队列的方式保证缓存的单线程(进程)写,从而避免失效时大量的并发请求落到底层存储系统上。

解决方法

1. 加锁排队. 限流-- 限流算法. 1.计数 2.滑动窗口 3.  令牌桶Token Bucket 4.漏桶 leaky bucket [1]

在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。

业界比较常用的做法,是使用mutex。简单地来说,就是在缓存失效的时候(判断拿出来的值为空),不是立即去load db,而是先使用缓存工具的某些带成功操作返回值的操作(比如Redis的SETNX或者Memcache的ADD)去set一个mutex key,当操作返回成功时,再进行load db的操作并回设缓存;否则,就重试整个get缓存的方法。

SETNX,是「SET if Not eXists」的缩写,也就是只有不存在的时候才设置,可以利用它来实现锁的效果。

2.数据预热

可以通过缓存reload机制,预先去更新缓存,再即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间,让缓存失效的时间点尽量均匀

3.做二级缓存,或者双缓存策略。

A1为原始缓存,A2为拷贝缓存,A1失效时,可以访问A2,A1缓存失效时间设置为短期,A2设置为长期。

4.缓存永远不过期

这里的“永远不过期”包含两层意思:

(1) 从缓存上看,确实没有设置过期时间,这就保证了,不会出现热点key过期问题,也就是“物理”不过期。

(2) 从功能上看,如果不过期,那不就成静态的了吗?所以我们把过期时间存在key对应的value里,如果发现要过期了,通过一个后台的异步线程进行缓存的构建,也就是“逻辑”过期.

从实战看,这种方法对于性能非常友好,唯一不足的就是构建缓存时候,其余线程(非构建缓存的线程)可能访问的是老数据,但是对于一般的互联网功能来说这个还是可以忍受。

1.3. 热点Key

     热点key:某个key访问非常频繁,当key失效的时候有大量的线程来构建缓存,导致负载增加,系统崩溃。

解决办法:

1、使用锁,单机用synchronized,lock等,分布式用分布式锁

2、缓存过期时间不设置,而是设置在key对应的value里。如果检测到存的时间超过过期时间则异步更新缓存

3、在value设置一个比过期时间t0小的过期时间值t1,当t1过期的时候,延长t1并做更新缓存操作

4、设置标签缓存,标签缓存设置过期时间,标签缓存过期后,需要异步更新实际缓存

2、异步队列

对于并发程度较高的,可采用异步队列的方式同步,可采用kafka等消息中间件处理消息生产和消费。

3、使用阿里的同步工具canal

canal是阿里巴巴旗下的一款开源项目,纯Java开发。基于数据库增量日志解析,提供增量数据订阅&消费,目前主要支持了MySQL(也支持mariaDB)。

起源:早期,阿里巴巴B2B公司因为存在杭州和美国双机房部署,存在跨机房同步的业务需求。不过早期的数据库同步业务,主要是基于trigger的方式获取增量变更,不过从2010年开始,阿里系公司开始逐步的尝试基于数据库的日志解析,获取增量变更进行同步,由此衍生出了增量订阅&消费的业务,从此开启了一段新纪元。

基于日志增量订阅&消费支持的业务:

数据库镜像

数据库实时备份

多级索引 (卖家和买家各自分库索引)

search build

业务cache刷新

价格变化等重要业务消息

简单来说,Canal 会将自己伪装成 MySQL 从节点(Slave),并从主节点(Master)获取 Binlog,解析和贮存后供下游消费端使用。Canal 包含两个组成部分:服务端和客户端。服务端负责连接至不同的 MySQL 实例,并为每个实例维护一个事件消息队列;客户端则可以订阅这些队列中的数据变更事件,处理并存储到数据仓库中

原理相对比较简单:

  1. canal模拟mysql slave的交互协议,伪装自己为mysql slave,向mysql master发送dump协议
  2. mysql master收到dump请求,开始推送binary log给slave(也就是canal)
  3. canal解析binary log对象(原始为byte流)

Redis和数据库一致性的更多相关文章

  1. Redis与数据库同步问题

    缓存数据与持久化数据的一致性,这个问题总结了一下(看到了一个不错的博文),其实就是读和写,还有就是要注意谁先谁后的问题. Redis 是一个高性能的key-value数据库. redis的出现,很大程 ...

  2. Redis 当成数据库在使用和可靠的分布式锁,Redlock 真的可行么?

    怎样做可靠的分布式锁,Redlock 真的可行么? https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html ...

  3. Redis和数据库 数据同步问题

    Redis和数据库同步问题 缓存充当数据库 比如说Session这种访问非常频繁的数据,就适合采用这种方案:当然了,既然没有涉及到数据库,那么也就不会存在一致性问题: 缓存充当数据库热点缓存 读操作 ...

  4. 如何保证Redis与数据库的数据一致性

    一般来说,只要你用到了缓存,不管是Redis还是memcache,就可能会涉及到数据库缓存与数据的一致性问题,这里我们以Redis为例. 我们该如何保证Redis与数据库的一致性呢? So easy: ...

  5. Redis单机数据库的实现原理

    本文主要介绍Redis的数据库结构,Redis两种持久化的原理:RDB持久化.AOF持久化,以及Redis事件分类及执行原理.最后,分别介绍了单机班Redid客户端和Redis服务器的使用和实现原理. ...

  6. Redis和数据库的数据一致性问题

    在数据读多写少的情况下作为缓存来使用,恐怕是Redis使用最普遍的场景了.当使用Redis作为缓存的时候,一般流程是这样的. 如果缓存在Redis中存在,即缓存命中,则直接返回数据 如果Redis中没 ...

  7. Redis 与 数据库处理数据的两种模式

    Redis 是一个高性能的key-value数据库. redis的出现,很大程度补偿了memcached这类key-value存储的不足,在部 分场合可以对关系数据库起到很好的补充作用.它提供了Pyt ...

  8. 快速搭建Redis缓存数据库

    之前一篇随笔——Redis安装及主从配置已经详细的介绍过Redis的安装于配置.本文要讲的是如何在已经安装过Redis的机器上快速的创建出一个新的Redis缓存数据库. 一.环境介绍 1) Linux ...

  9. Redis 与 数据库处理数据的两种模式(转)

    Redis 是一个高性能的key-value数据库. redis的出现,很大程度补偿了memcached这类key-value存储的不足,在部 分场合可以对关系数据库起到很好的补充作用.它提供了Pyt ...

随机推荐

  1. django2外键,F表达式,Q表达式

    一对多 环境 两个类:书的类别和文章,一片文章只能有一个作者,一个作者可以有多个文章,这之间组成了一对多的关系 class Category(models.Model): category = mod ...

  2. pdf的使用遇到的问题

    http://blog.csdn.net/atluckstar/article/details/77688972 回答网友提问  2015-7-28 因为好多人问能不能显示中文的问题,我总结大致分为两 ...

  3. K8S当中的本地卷(Local PV)的使用

    Local PV是从kuberntes 1.10开始引入,本质目的是为了解决hostPath的缺陷.通过PV控制器与Scheduler的结合,会对local PV做针对性的逻辑处理,从而,让Pod在多 ...

  4. Activiti6 查询由某人发起的流程请求 设置流程发起人

    发起流程时,配置activiti:initiator属性,并且在代码中: Authentication.setAuthenticatedUserId(userId); 其中,userId对应流程发起人 ...

  5. Mybatis JdbcType与Oracle、MySql数据类型对

    Mybatis JdbcType Oracle MySql JdbcType ARRAY     JdbcType BIGINT   BIGINT JdbcType BINARY     JdbcTy ...

  6. String s = new String("xyz");创建了几个String Object?并作说明。

    String s = new String("xyz");创建了几个String Object?并作说明. 共产生了两个2个对象,第一个是字符串常量xyz,存储于常量池中.第二个对 ...

  7. 【转载】浅析从外部访问 Kubernetes 集群中应用的几种方式

    一般情况下,Kubernetes 的 Cluster Network 是属于私有网络,只能在 Cluster Network 内部才能访问部署的应用.那么如何才能将 Kubernetes 集群中的应用 ...

  8. Android 开发基础入门篇: android studio安装教程

    下载地址 http://www.android-studio.org/ 注意: 安装主要分两种情况,下载的自带SDK和不带SDK两种 然后又分为安装版,就是.exe和解压版 两种的区别...解压版,, ...

  9. 深入js系列-类型(隐式强制转换)

    隐式强制转换 在其可控的情况下,减少冗余,让代码更简洁,很多地方都进行了隐式转换,比如常见的三目表达式.if().for().while.逻辑运算符 || &&,适当通过语言机制,抽象 ...

  10. 虚拟化原理到K8s实践经验路线总结

    以下这些内容均为自行学习总结的内容,很多内容没有写概括介绍,看起来可能会有些突兀,但并不影响整体性,我自己的学习经验告诉我,这些内容还仅仅是最精简的核心部分,周边还有很多可扩展内容,主要是操作系统生态 ...