rabbitmq保证数据不丢失方案
rabbitmq如何保证消息的可靠性
1、保证消息不丢失
1.1、开启事务(不推荐)
1.2、开启confirm(推荐)
1.3、开启RabbitMQ的持久化(交换机、队列、消息)
1.4、关闭RabbitMQ的自动ack(改成手动)
2、保证消息不重复消费
2.1、幂等性(每个消息用一个唯一标识来区分,消费前先判断此标识有没有被消费过,若已消费过,则直接ACK)
rabbitmq如何保证消息的顺序性
将消息放入同一个交换机,交给同一个队列,这个队列只有一个消费者,这个消费者只允许同时开启一个线程
rabbitMQ保证消息不丢失的具体方案
前提:
(1)开启confirm
(2)开启RabbitMQ的持久化(交换机、队列、消息)
(3)关闭RabbitMQ的自动ack(改成手动)
(4)配置消费重试次数,消费重试间隔时间等
1、保证投放消息不丢失
(1)先将消息放入生产者Redis(此时消息的状态为未投放),再放入队列
(2)根据conform(ReturnCallback和ConfirmCallback)的结果来确定消息是否投递成功,
投递成功的,修改生产者redis中此消息的投递状态为已投递
投递失败的将会放入失败的Redis,并从生产者Redis中删除,由定时任务定期扫描并重新投递
(3)需要一个专门的定时任务扫描生产者Redis中存放了一定时间,但是状态还是未投放的消息
此消息会被认为已经投递,但是没有任何反馈结果(由于不可知因素,导致没有ReturnCallback,也没有ConfirmCallback),
此类消息被扫描到后,会放入失败的Redis,并从生产者Redis中删除,由定时任务定期扫描并重新投递
(4)还需要一个专门的定时任务扫描生产者Redis中存放了很久,仍然未消费的数据(状态为已投递),此类消息被扫描到后,会放入失败的Redis,并从生产者Redis中删除,由定时任务定期扫描并重新投递
(5)扫描失败的Redis的定时任务都遵循一条原则,一条消息最多被重新投递三次,若投递了三次仍然失败,则记录日志,记录到数据库,不会再投递,需要人工干预处理
2、保证消费消息不丢失
(1)消费者取到消息后,从消息中取出唯一标识,先判断此消息有没有被消费过,若已消费过,则直接ACK(避免重复消费)
(2)正常处理成功后,将生产者Redis中的此消息删除,并ACK(告诉server端此消息已成功消费)
(3)遇到异常时,捕获异常,验证自己在消息中设定的重试次数是否超过阀值,若超过,则放入死信队列,若未超过,则向将消息中的重试次数加1,抛出自定义异常,进入重试机制
(4)有专门的消费者用于处理死信队列中消费多次仍未消费成功的数据,可以记录日志,入库,人工干预处理
集群部署方案
rabbitmq有两种集群部署方案
1、普通模式
rabbit01和rabbit02两个节点仅有相同的元数据,即队列的结构
消息实体只存在于其中一个节点rabbit01(或者rabbit02)
当消息进入rabbit01节点的Queue后,consumer从rabbit02节点消费时,RabbitMQ会临时在rabbit01、rabbit02间进行消息传输,把A中的消息实体取出并经过B发送给consumer
2、镜像模式
把需要的队列做成镜像队列,存在与多个节点,消息实体会主动在镜像节点间同步,属于RabbitMQ的HA方案。
副作用也很明显,除了降低系统性能外,如果镜像队列数量过多,加之大量的消息进入,集群内部的网络带宽将会被这种同步通讯大大消耗掉。
rabbitmq保证数据不丢失方案的更多相关文章
- [转帖]kafka 如何保证数据不丢失
kafka 如何保证数据不丢失 https://www.cnblogs.com/MrRightZhao/p/11498952.html 一般我们在用到这种消息中件的时候,肯定会考虑要怎样才能保证数 ...
- kafka 如何保证数据不丢失
一般我们在用到这种消息中件的时候,肯定会考虑要怎样才能保证数据不丢失,在面试中也会问到相关的问题.但凡遇到这种问题,是指3个方面的数据不丢失,即:producer consumer 端数据不丢失 b ...
- Spark Streaming使用Kafka保证数据零丢失
来自: https://community.qingcloud.com/topic/344/spark-streaming使用kafka保证数据零丢失 spark streaming从1.2开始提供了 ...
- Kafka如何保证数据不丢失
Kafka如何保证数据不丢失 1.生产者数据的不丢失 kafka的ack机制:在kafka发送数据的时候,每次发送消息都会有一个确认反馈机制,确保消息正常的能够被收到,其中状态有0,1,-1. 如果是 ...
- Spark Streaming和Kafka整合保证数据零丢失
当我们正确地部署好Spark Streaming,我们就可以使用Spark Streaming提供的零数据丢失机制.为了体验这个关键的特性,你需要满足以下几个先决条件: 1.输入的数据来自可靠的数据源 ...
- kafka保证数据不丢失机制
kafka如何保证数据的不丢失 1.生产者如何保证数据的不丢失:消息的确认机制,使用ack机制我们可以配置我们的消息不丢失机制为-1,保证我们的partition的leader与follower都保存 ...
- Spark Streaming和Kafka整合是如何保证数据零丢失
转载:https://www.iteblog.com/archives/1591.html 当我们正确地部署好Spark Streaming,我们就可以使用Spark Streaming提供的零数据丢 ...
- Elasticsearch如何保证数据不丢失?
目录 如何保证数据写入过程中不丢 直接落盘的 translog 为什么不怕降低写入吞吐量? 如何保证已写数据在集群中不丢 in-memory buffer 总结 LSM Tree的详细介绍 参考资料 ...
- 23 mysql怎么保证数据不丢失?
MySQL的wal机制,得到的结论是:只要redo log和binlog 持久化到磁盘,就能确保mysql异常重新启动后,数据是可以恢复的. binlog的写入机制 其实,binlog的写入逻辑比较简 ...
随机推荐
- 改进欧拉公式求解常微分方程(c++)
#include<iostream> #include<iomanip> using namespace std; int main() { double x,y,h,temp ...
- SDN第六次上机作业
1.实验拓扑 实验拓扑图如下: 搭建代码如下: 创建py脚本文件,并编写代码,如下: class MyTopo(Topo): def __init__(self): # initilaize topo ...
- el-cascader遇到一个坑的问题
经仔细分析,如果二级和三级的value一样,就会出现这个问题.
- ubuntu18.04 无法连接有线
突然发现Ubuntu无法连接有线,插上网线后还是显示 Cable unplugged. 参考这篇文章:https://zhuanlan.zhihu.com/p/32924819 因为我无线网卡正常工作 ...
- Spring cloud微服务安全实战-7-12整合链路追踪和日志监控
调用链路的监控和统一日志的监控结合起来.比如说我在调用链监控上发现有一个调用订单的服务慢了.通过pinpoint可以看到 .用户发出来的请求,经过了网关,经过了order,经过了pagement.通过 ...
- [Python] 01 - Number and Matrix
故事背景 一.大纲 如下,chapter4 是个概览,之后才是具体讲解. 二. 编译过程 Ref: http://www.dsf.unica.it/~fiore/LearningPython.pdf
- LinkedBlockingQueue与ArrayBlockingQueue
阻塞队列与普通的队列(LinkedList/ArrayList)相比,支持在向队列中添加元素时,队列的长度已满阻塞当前添加线程,直到队列未满或者等待超时:从队列中获取元素时,队列中元素为空 ,会将获取 ...
- 【tensorflow基础】ubuntu-tensorflow可视化工具tensorboard-No dashboards are active for the current data set.
前言 今天基于tensorflow训练一个检测模型,本应看到训练曲线的,却只见到一个文件events.out.tfevents.1570520647.hostname,后来发现这个文件可以查看训练曲线 ...
- python jieba
https://www.cnblogs.com/jiayongji/p/7119065.html 安装 pip install jieba 简单用法 结巴分词分为三种模式:精确模式(默认).全模式和搜 ...
- string 与 int double 的转化
#include <iostream> #include <string> #include <sstream> using namespace std; int ...