Pandas | 07 函数应用
要将自定义或其他库的函数应用于Pandas对象,有三个重要的方法,下面来讨论如何使用这些方法。使用适当的方法取决于函数应用于哪个层面(DataFrame
,行或列或元素)。
- 表合理函数应用:
pipe()
- 行或列函数应用:
apply()
- 元素函数应用:
applymap()
一、对整个DataFrame
执行操作
可以通过将函数和适当数量的参数作为管道参数来执行自定义操作
import pandas as pd
import numpy as np # adder函数将两个数值作为参数相加并返回总和
def adder(ele1,ele2):
return ele1+ele2 df = pd.DataFrame(np.random.randn(,),columns=['col1','col2','col3'])
df.pipe(adder,) # 现在将使用自定义函数对DataFrame进行操作
print(df)
输出结果:
col1 col2 col3
0 2.176704 2.219691 1.509360
1 2.222378 2.422167 3.953921
2 2.241096 1.135424 2.696432
3 2.355763 0.376672 1.182570
4 2.308743 2.714767 2.130288
二、对行或列执行操作
可以使用apply()
方法沿DataFrame
或Panel
的轴应用任意函数,它与描述性统计方法一样,采用可选的axis
参数。 默认情况下,操作按列执行,将每列列为数组。
示例-1
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])
df.apply(np.mean)
print(df)
输出结果:
col1 col2 col3
0 0.343569 -1.013287 1.131245
1 0.508922 -0.949778 -1.600569
2 -1.182331 -0.420703 -1.725400
3 0.860265 2.069038 -0.537648
4 0.876758 -0.238051 0.473992
通过传递axis
参数,可以在行上执行操作。
示例-2
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])
df.apply(np.mean,axis=1)
print(df)
输出结果:
col1 col2 col3
0 0.543255 -1.613418 -0.500731
1 0.976543 -1.135835 -0.719153
2 0.184282 -0.721153 -2.876206
3 0.447738 0.268062 -1.937888
4 -0.677673 0.177455 1.397360
示例-3
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])
df.apply(lambda x: x.max() - x.min())
print(df)
输出结果:
col1 col2 col3
0 -0.585206 -0.104938 1.424115
1 -0.326036 -1.444798 0.196849
2 -2.033478 1.682253 1.223152
3 -0.107015 0.499846 0.084127
4 -1.046964 -1.935617 -0.009919
三、对元素执行操作
并不是所有的函数都可以向量化(也不是返回另一个数组的NumPy
数组,也不是任何值),在DataFrame
上的方法applymap()
和类似于在Series上的map()
接受任何Python函数,并且返回单个值。
示例-1
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])
df['col1'].map(lambda x:x*100)
print(df)
输出结果:
col1 col2 col3
0 0.629348 0.088467 -1.790702
1 -0.592595 0.184113 -1.524998
2 -0.419298 0.262369 -0.178849
3 -1.036930 1.103169 0.941882
4 -0.573333 -0.031056 0.315590
示例-2
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])
df.applymap(lambda x:x*100)
print(df)
输出结果:
output is as follows:
col1 col2 col3
0 17.670426 21.969052 -49.064031
1 22.237846 42.216693 195.392124
2 24.109576 -86.457646 69.643171
3 35.576312 -162.332803 -81.743023
4 30.874333 71.476717 13.028751
Pandas | 07 函数应用的更多相关文章
- Pandas的函数应用、层级索引、统计计算
1.Pandas的函数应用 1.apply 和 applymap 1. 可直接使用NumPy的函数 示例代码: # Numpy ufunc 函数 df = pd.DataFrame(np.random ...
- pandas常用函数之shift
shift函数是对数据进行移动的操作,假如现在有一个DataFrame数据df,如下所示: index value1 A 0 B 1 C 2 D 3 那么如果执行以下代码: df.shift() 就会 ...
- pandas常用函数之diff
diff函数是用来将数据进行某种移动之后与原数据进行比较得出的差异数据,举个例子,现在有一个DataFrame类型的数据df,如下: index value1 A 0 B 1 C 2 D 3 如果执行 ...
- pandas 常用函数整理
pandas常用函数整理,作为个人笔记. 仅标记函数大概用途做索引用,具体使用方式请参照pandas官方技术文档. 约定 from pandas import Series, DataFrame im ...
- Python web前端 07 函数及作用域
Python web前端 07 函数及作用域 一.函数 1.有名函数和匿名函数 #函数是由事件驱动的或者当它被调用时执行的可重复使用的代码块 #函数就是包裹在花括号里面的代码块,前面使用了关键字fun ...
- python pandas字符串函数详解(转)
pandas字符串函数详解(转)——原文连接见文章末尾 在使用pandas框架的DataFrame的过程中,如果需要处理一些字符串的特性,例如判断某列是否包含一些关键字,某列的字符长度是否小于3等等 ...
- 【转载】pandas常用函数
原文链接:https://www.cnblogs.com/rexyan/p/7975707.html 一.import语句 import pandas as pd import numpy as np ...
- Pandas常用函数入门
一.Pandas Python Data Analysis Library或Pandas是基于NumPy的一种工具,该工具是为了解决数据分析任务而创建的.Pandas纳入了大量库和一些标准的数据模型, ...
- pandas常用函数
1. df.head(n): 显示数据前n行,不指定n,df.head则会显示所有的行 2. df.columns.values获取所有列索引的名称 3. df.column_name: 直接获取列c ...
随机推荐
- no main manifest attribute, in testProject-1.0-SNAPSHOT.jar
no main manifest attribute, in testProject-1.0-SNAPSHOT.jar 错误描述: no main manifest attribute, in tes ...
- 应用Redis分布式锁解决重复通知的问题
研究背景: 这几天被支付宝充值后通知所产生的重复处理问题搞得焦头烂额, 一周连续发生两次重复充钱的杯具, 发事故邮件发到想吐..为了挽回程序员的尊严, 我用了Redis的锁机制. 事故场景: 支付宝下 ...
- 宽字符与Unicode (c语言 汉语字符串长度)
在C语言中,我们使用char来定义字符,占用一个字节,最多只能表示128个字符,也就是ASCII码中的字符.计算机起源于美国,char 可以表示所有的英文字符,在以英语为母语的国家完全没有问题. 但是 ...
- Window应急响应(六):NesMiner挖矿病毒
0x00 前言 作为一个运维工程师,而非一个专业的病毒分析工程师,遇到了比较复杂的病毒怎么办?别怕,虽然对二进制不熟,但是依靠系统运维的经验,我们可以用自己的方式来解决它. 0x01 感染现象 1.向 ...
- 【04】Saltstack:配置管理
写在前面的话 当我们需要进行一系列可重复且复杂的操作的时候,如果还继续用传统的 cmd.run 来执行显然难以满足我们的需求.这时候就会在想一个问题,我们能不能把这些操作编辑成一个类似脚本的操作,我们 ...
- .NET获取实例化对象的部分属性名称
前言 项目中实例化的对象,对象中里面很有很多属性,有些是我们不需要的,有些是我们需要的,例如在下面的示例中:ID,CreateBy等属性在CB_Projects对象中是不需要的,在获取实例化对象属性名 ...
- c# asp.net core取当月第一天和最后一天及删除最后一个字符的多种方法
当月第一天0时0分0秒 DateTime.Now.AddDays( - DateTime.Now.Day).Date 当月最后一天23时59分59秒 DateTime.Now.AddDays( - D ...
- win10安装MySQL5.6.
我分了两种下载安装的方式给大家看,注意数据库这个东西不在乎版本是不是最新,在乎的是够稳定,现在公司中常用的是mysql5.5和mysql5.6的版本,我现在就用mysql5.6的版本给大家来演示一下: ...
- em与rem之间的区别以及移动设备中的rem适配方案
em与rem之间的区别: 共同点: 它们都是像素单位 它们都是相对单位 不同点: em大小是基于父元素的字体大小 rem大小是基于根元素(html)的字体的大小 实例: <!DOCTYPE ht ...
- Qt Creator清除最近工程历史信息
Qt Creator清除最近工程历史信息 随着不断打开和关闭qt工程,欢迎->Projects->Recent projects下的历史工程信息越来越多,是该清理一下了,强迫症会追求干净一 ...