elasticsearch 7版本 基础操作

首先我们浏览器http://localhost:5601/进入 kibana里的Console中输入

首先让我们在 Console 中输入:

PUT t1/type1/1
{
"name":"春生",
"age":16
}

返回结果 (是以REST ful 风格返回的 ):

{
"_index" : "t1",
"_type" : "type1",
"_id" : "1",
"_version" : 1,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 0,
"_primary_term" : 1
}

我们来简要的说一下命令栏和返回结果栏都是表示什么意思:

命令栏 描述 结果栏 描述
PUT 创建命令 _index 索引
t1 索引 _type 类型
type1 类型 _id id
1 id _version 版本
name 属性 result 操作类型
age 属性 _shards 分片信息
method url地址 描述
PUT localhost:9200/索引名称/类型名称/文档id 创建文档(指定文档id)
POST localhost:9200/索引名称/类型名称 创建文档(随机文档id)
POST localhost:9200/索引名称/类型名称/文档id/_update 修改文档
DELETE localhost:9200/索引名称/类型名称/文档id 删除文档
GET localhost:9200/索引名称/类型名称/文档id 查询文档通过文档id
POST localhost:9200/索引名称/类型名称/_search 查询所有数据

字段类型指定:

PUT t1/type1/1
{
"name":"春生",
"age":16
}

那么 name这个字段 用不用指定类型呢。毕竟我们关系型数据库 是需要指定类型的啊

  1. 字符串类型

    textkeyword
  2. 数值类型

    long, integer, short, byte, double, float, half_float, scaled_float
  3. 日期类型

    date
  4. te布尔值类型

    boolean
  5. 二进制类型

    binary
  6. 范围类型

    integer_range , float_range, long_range, double_range, date_range
指定字段类型:
PUT db
{
"mappings": {
"properties": {
"name":{
"type":"text"
},
"age":{
"type": "long"
},
"birthday":{
"type":"date"
}
}
}
}

查看一下索引字段:

GET db/

返回结果:

{
"db" : {
"aliases" : { },
"mappings" : {
"properties" : {
"age" : {
"type" : "long"
},
"birthday" : {
"type" : "date"
},
"name" : {
"type" : "text"
}
}
},
"settings" : {
"index" : {
"creation_date" : "1572247546224",
"number_of_shards" : "1",
"number_of_replicas" : "1",
"uuid" : "g-QMzIELQL2bOU1d4pDaKA",
"version" : {
"created" : "7030299"
},
"provided_name" : "db"
}
}
}
}

我们看上列中 字段类型是我自己定义的 那么 我们不定义类型 会是什么情况呢。

默认字段类型
PUT test3/_doc/1
{
"name":"春生",
"age":13,
"ddd":"1997-3-3"
}

查看一下test3索引:

GET test3

返回结果:

{
"test3" : {
"aliases" : { },
"mappings" : {
"properties" : {
"age" : {
"type" : "long"
},
"ddd" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"name" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
}
}
},
"settings" : {
"index" : {
"creation_date" : "1572248744742",
"number_of_shards" : "1",
"number_of_replicas" : "1",
"uuid" : "ebwFzh6-R32SOhZSj1S0pQ",
"version" : {
"created" : "7030299"
},
"provided_name" : "test3"
}
}
}
}

我们看上列没有给字段指定类型 那么es就会默认给我配置 如字段类型 分片 以及id 就会默认给我们配置 。

对比关系型数据库 :

PUT t1/type1/1 : 索引t1 相当于关系型数据库的 ,类型type1就相当于表 ,1 代表数据中的主键id

补充(注意):

这里需要补充的是 ,在elastisearch5版本前,一个索引下可以创建多个类型,但是在elastisearch5后,一个索引只能对应一个类型,而id相当于关系型数据库的主键id若果不指定就会默认生成一个20位的uuid,属性相当关系型数据库的column(列)。

而结果中的 result 则是操作类型,现在是 created ,表示第一次创建。如果我们再次点击执行该命令,那么result 则会是 updated 。我们细心则会发现 _version 开始是1,现在你每点击一次就会增加一次。表示第几次更改。

我们在来学一条命令(elasticsearch 中的索引的情况):

GET _cat/indices?v

返回结果:

![image-20191021193649302](/Users/jiangchunsheng/Library/Application Support/typora-user-images/image-20191021193649302.png)

查看我们所有索引的状态健康情况 分片,数据储存大小等等。

那么怎么删除一条索引呢(库)呢?

DELETE /t1

返回结果:

{
"acknowledged" : true
}
# 表示删除成功了

基础增删改查

创建数据PUT

第一条数据:

PUT test/chunsheng/1
{
"name":"春生",
"age":18,
"from":"gu",
"desc":"皮肤黑,武器长,性格直",
"tags":["黑","长","直"]
}
# 注意 逗号 一定是英文的 ,

第二条数据:

PUT test/chunsheng/2
{
"name":"大娘子",
"age":18,
"from":"sheng",
"desc":"肤白貌美,就是腿长",
"tags":["白","富","美"]
}

第三条数据:

PUT test/chunsheng/3
{ "name":"龙套偏房",
"age":22,
"from":"gu",
"desc":"mmp,没看怎么看,不知道怎么形容",
"tags":["造数据", "真","难"]
}

注意⚠️:当执行 命令时,如果数据不存在,则新增该条数据,如果数据存在则修改该条数据。

咱们通过 GET 命令查询一下:

GET test/chunsheng/1

返回结果:

{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "1",
"_version" : 1,
"_seq_no" : 0,
"_primary_term" : 1,
"found" : true,
"_source" : {
"name" : "春生",
"age" : 18,
"from" : "gu",
"desc" : "皮肤黑,武器长,性格直",
"tags" : [
"黑",
"长",
"直"
]
}
}

如果你想更新数据 可以覆盖这条数据:

PUT test/chunsheng/1
{
"name":"春生",
"age":18,
"from":"gu",
"desc":"皮肤黄,武器长,性格直",
"tags":["黄","长","直"]
}

返回结果:

{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "1",
"_version" : 2,
"result" : "updated",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 3,
"_primary_term" : 1
}

查看结果:

{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "1",
"_version" : 2,
"_seq_no" : 3,
"_primary_term" : 1,
"found" : true,
"_source" : {
"name" : "春生",
"age" : 18,
"from" : "gu",
"desc" : "皮肤黄,武器长,性格直",
"tags" : [
"黄",
"长",
"直"
]
}
}

已经修改了 那么 PUT 可以更新数据但是。麻烦的是 原数据你还要重写一遍要 这不符合我们规矩

更新数据POST:

POST test/chunsheng/1/_update # 加了个_update
{
"doc": {
"desc":"皮肤黄,富二代,就有钱",
"tags":["黄","富","钱"]
}
}

返回结果:

{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "1",
"_version" : 3,
"_seq_no" : 4,
"_primary_term" : 1,
"found" : true,
"_source" : {
"name" : "春生",
"age" : 18,
"from" : "gu",
"desc" : "皮肤黄,富二代,就有钱",
"tags" : [
"黄",
"富",
"钱"
]
}
}

上例中,我们使用 POST 命令,在 id 后面跟 _update ,要修改的内容放到 doc 文档(属性)中即可。

查询GET

简单的查询,我们上面已经不知不觉的使用熟悉了:

GEt test/chunsheng/1

条件查询 _search?q=

GET test/chunsheng/_search?q=from:gu

通过 _serarch?q = from:gu 查询条件是from属性是gu有那些数据。

别忘 了 _search 和 from 属性中间的分隔符 ? 。

返回结果:

{
"took" : 19,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 2, # 一共两条数据
"relation" : "eq"
},
"max_score" : 0.35667494,
"hits" : [
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "3",
"_score" : 0.35667494,
"_source" : {
"name" : "龙套偏房",
"age" : 22,
"from" : "gu",
"desc" : "mmp,没看怎么看,不知道怎么形容",
"tags" : [
"造数据",
"真",
"难"
]
}
},
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "1",
"_score" : 0.35667494,
"_source" : {
"name" : "春生",
"age" : 18,
"from" : "gu",
"desc" : "皮肤黄,富二代,就有钱",
"tags" : [
"黄",
"富",
"钱"
]
}
}
]
}
}

我们看一下结果 返回并不是 数据本身,是给我们了一个 hits ,还有 _score得分,就是根据算法算出和查询条件匹配度高得分就搞。后面我们单独机会讲这个算法。

构建查询

GET test/chunsheng/_search
{
"query": {
"match": {
"from": "gu"
}
}
}

上例,查询条件是一步步构建出来的,将查询条件添加到 match 中即可。

返回结果还是一样的:

{
"took" : 19,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 2, # 一共两条数据
"relation" : "eq"
},
"max_score" : 0.35667494,
"hits" : [
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "3",
"_score" : 0.35667494,
"_source" : {
"name" : "龙套偏房",
"age" : 22,
"from" : "gu",
"desc" : "mmp,没看怎么看,不知道怎么形容",
"tags" : [
"造数据",
"真",
"难"
]
}
},
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "1",
"_score" : 0.35667494,
"_source" : {
"name" : "春生",
"age" : 18,
"from" : "gu",
"desc" : "皮肤黄,富二代,就有钱",
"tags" : [
"黄",
"富",
"钱"
]
}
}
]
}
}

除此之外,我们还可以查询跟顾老二相关的所有数据,那就是查询全部:

GET test/chunsheng/_search #这是一个 但是没有条件
GET test/chunsheng/_search #查询所有的数据
{
"query": {
"match_all": {}
}
}

match_all的值为空,表示没有查询条件,就像select * from table_name一样。

返回结果:

#! Deprecation: [types removal] Specifying types in search requests is deprecated.
{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 3,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "2",
"_score" : 1.0,
"_source" : {
"name" : "大娘子",
"age" : 18,
"from" : "sheng",
"desc" : "肤白貌美,就是腿长",
"tags" : [
"白",
"富",
"美"
]
}
},
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "3",
"_score" : 1.0,
"_source" : {
"name" : "龙套偏房",
"age" : 22,
"from" : "gu",
"desc" : "mmp,没看怎么看,不知道怎么形容",
"tags" : [
"造数据",
"真",
"难"
]
}
},
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "1",
"_score" : 1.0,
"_source" : {
"name" : "春生",
"age" : 18,
"from" : "gu",
"desc" : "皮肤黄,富二代,就有钱",
"tags" : [
"黄",
"富",
"钱"
]
}
}
]
}
}

如果有个需求,我们仅是需要查看 name 和 desc 两个属性,其他的不要怎么办?

GET test/chunsheng/_search
{
"query": {
"match_all": {}
},
"_source": ["name","age"]
}

如上例所示,在查询中,通过 _source 来控制仅返回 name 和 age 属性。

返回结果:

#! Deprecation: [types removal] Specifying types in search requests is deprecated.
{
"took" : 2,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 3,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "2",
"_score" : 1.0,
"_source" : {
"name" : "大娘子",
"age" : 18
}
},
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "3",
"_score" : 1.0,
"_source" : {
"name" : "龙套偏房",
"age" : 22
}
},
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "1",
"_score" : 1.0,
"_source" : {
"name" : "春生",
"age" : 18
}
}
]
}
}

Python推荐

一般的,我们推荐使用构建查询,以后在与Python交互时的查询等也是使用构建查询方式处理查询条件,因为该方 式可以构建更加复杂的查询条件,也更加一目了然

排序查询

我们说到排序 有人就会想到:正序 或 倒序 那么我们先来倒序:

倒序
GET test/chunsheng/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"age": {
"order": "desc"
}
}
]
}

上例,在条件查询的基础上,我们又通过 sort 来做排序,排序对象是 age , order 是 desc 降序。

返回结果:

#! Deprecation: [types removal] Specifying types in search requests is deprecated.
{
"took" : 21,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 3,
"relation" : "eq"
},
"max_score" : null,
"hits" : [
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "3",
"_score" : null,
"_source" : {
"name" : "龙套偏房",
"age" : 22,
"from" : "gu",
"desc" : "mmp,没看怎么看,不知道怎么形容",
"tags" : [
"造数据",
"真",
"难"
]
},
"sort" : [
22
]
},
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "2",
"_score" : null,
"_source" : {
"name" : "大娘子",
"age" : 18,
"from" : "sheng",
"desc" : "肤白貌美,就是腿长",
"tags" : [
"白",
"富",
"美"
]
},
"sort" : [
18
]
},
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "1",
"_score" : null,
"_source" : {
"name" : "春生",
"age" : 18,
"from" : "gu",
"desc" : "皮肤黄,富二代,就有钱",
"tags" : [
"黄",
"富",
"钱"
]
},
"sort" : [
18
]
}
]
}
}
正序

就是 desc 换成了 asc

GET test/chunsheng/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"age": {
"order": "asc"
}
}
]
}

返回结果:

#! Deprecation: [types removal] Specifying types in search requests is deprecated.
{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 3,
"relation" : "eq"
},
"max_score" : null,
"hits" : [
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "2",
"_score" : null,
"_source" : {
"name" : "大娘子",
"age" : 18,
"from" : "sheng",
"desc" : "肤白貌美,就是腿长",
"tags" : [
"白",
"富",
"美"
]
},
"sort" : [
18
]
},
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "1",
"_score" : null,
"_source" : {
"name" : "春生",
"age" : 18,
"from" : "gu",
"desc" : "皮肤黄,富二代,就有钱",
"tags" : [
"黄",
"富",
"钱"
]
},
"sort" : [
18
]
},
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "3",
"_score" : null,
"_source" : {
"name" : "龙套偏房",
"age" : 22,
"from" : "gu",
"desc" : "mmp,没看怎么看,不知道怎么形容",
"tags" : [
"造数据",
"真",
"难"
]
},
"sort" : [
22
]
}
]
}
}

注意:在排序的过程中,只能使用可排序的属性进行排序。那么可以排序的属性有哪些呢?

  • 数字
  • 日期
  • ID

其他都不行

分页查询

GET test/chunsheng/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"age": {
"order": "asc"
}
}
],
"from": 0, # 从第n条开始
"size": 1 # 返回n条数据 }

返回结果:

#! Deprecation: [types removal] Specifying types in search requests is deprecated.
{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 3,
"relation" : "eq"
},
"max_score" : null,
"hits" : [
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "2",
"_score" : null,
"_source" : {
"name" : "大娘子",
"age" : 18,
"from" : "sheng",
"desc" : "肤白貌美,就是腿长",
"tags" : [
"白",
"富",
"美"
]
},
"sort" : [
18
]
}
]
}
}

就返回了一条数据 是从第0条开始的返回一条数据 。

学到这里,我们也可以看到,我们的查询条件越来越多,开始仅是简单查询,慢慢增加条件查询,增加排序,对返回 结果进行限制。所以,我们可以说:对elasticsearch于 来说,所有的查询条件都是可插拔的,彼此之间用 分 割。比如说,我们在查询中,仅对返回结果进行限制:

GET test/chunsheng/_search
{
"query": {
"match_all": {}
}, "from": 0,
"size": 2
}

返回结果:

#! Deprecation: [types removal] Specifying types in search requests is deprecated.
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 3,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "2",
"_score" : 1.0,
"_source" : {
"name" : "大娘子",
"age" : 18,
"from" : "sheng",
"desc" : "肤白貌美,就是腿长",
"tags" : [
"白",
"富",
"美"
]
}
},
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "3",
"_score" : 1.0,
"_source" : {
"name" : "龙套偏房",
"age" : 22,
"from" : "gu",
"desc" : "mmp,没看怎么看,不知道怎么形容",
"tags" : [
"造数据",
"真",
"难"
]
}
}
]
}
}

布尔查询

must (and)

我要查询所有from属性为“gu“的数据:must

GET test/chunsheng/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"from": "gu"
}
},
{
"match": {
"age": 18
}
}
]
}
}
}

我们通过在 bool 属性内使用 must 来作为查询条件,那么条件是什么呢 age :18 ,from:gu 结果就有一条数据。

是不是 有点像 and 的感觉

返回结果:

#! Deprecation: [types removal] Specifying types in search requests is deprecated.
{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 1.3566749,
"hits" : [
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "1",
"_score" : 1.3566749,
"_source" : {
"name" : "春生",
"age" : 18,
"from" : "gu",
"desc" : "皮肤黄,富二代,就有钱",
"tags" : [
"黄",
"富",
"钱"
]
}
}
]
}
}
should (or)

那么我要查询from为gu,和 age 为18的 的条件

GET test/chunsheng/_search
{
"query": {
"bool": {
"should": [
{
"match": {
"from": "gu"
}
},
{
"match": {
"age": 18
}
}
]
}
}
}

返回结果:

#! Deprecation: [types removal] Specifying types in search requests is deprecated.
{
"took" : 2,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 3,
"relation" : "eq"
},
"max_score" : 1.3566749,
"hits" : [
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "1",
"_score" : 1.3566749,
"_source" : {
"name" : "春生",
"age" : 18,
"from" : "gu",
"desc" : "皮肤黄,富二代,就有钱",
"tags" : [
"黄",
"富",
"钱"
]
}
},
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "2",
"_score" : 1.0,
"_source" : {
"name" : "大娘子",
"age" : 18,
"from" : "sheng",
"desc" : "肤白貌美,就是腿长",
"tags" : [
"白",
"富",
"美"
]
}
},
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "3",
"_score" : 0.35667494,
"_source" : {
"name" : "龙套偏房",
"age" : 22,
"from" : "gu",
"desc" : "mmp,没看怎么看,不知道怎么形容",
"tags" : [
"造数据",
"真",
"难"
]
}
}
]
}
}

我们的返回结果 是不是 出现了一个 age :22的 说明 我们 查出了。符合age 是18 和 from 是gu的 都行了

是不是有点像 **or ** 呢

must_not (not)

我想要查询 年龄不是 18 的 数据

GET test/chunsheng/_search
{
"query": {
"bool": {
"must_not": [
{
"match": {
"age": 18
}
}
]
}
}
}

返回结果:

#! Deprecation: [types removal] Specifying types in search requests is deprecated.
{
"took" : 8,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 0.0,
"hits" : [
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "3",
"_score" : 0.0,
"_source" : {
"name" : "龙套偏房",
"age" : 22,
"from" : "gu",
"desc" : "mmp,没看怎么看,不知道怎么形容",
"tags" : [
"造数据",
"真",
"难"
]
}
}
]
}
}
Fitter

我要查询 from为gu的,age大于18的数据

GET test/chunsheng/_search
{
"query":{
"bool": {
"must": [
{
"match": {
"from": "gu"
}
}
],
"filter": {
"range": {
"age": {
"gt": 18 }
}
}
}
}
}

这里就用到了 filter 条件过滤查询,过滤条件的范围用 range 表示, gt 表示大于,大于多少呢?是18。 结果如下:

  • gt 表示大于

  • gte 表示大于等于

  • lt 表示小于

  • lte 表示小于等于

    返回结果:

#! Deprecation: [types removal] Specifying types in search requests is deprecated.
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 0.47000363,
"hits" : [
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "3",
"_score" : 0.47000363,
"_source" : {
"name" : "龙套偏房",
"age" : 22,
"from" : "gu",
"desc" : "mmp,没看怎么看,不知道怎么形容",
"tags" : [
"造数据",
"真",
"难"
]
}
}
]
}
}

要查询 from 是 gu , age 在 25~30 之间的怎么查?

GET test/chunsheng/_search
{
"query":{
"bool": {
"must": [
{
"match": {
"from": "gu"
}
}
],
"filter": {
"range": {
"age": {
"gte": 25,
"lte": 30
}
}
}
}
}
}

*如果在filter过滤条件中建议用must代替

短语检索

我要查询 tags为黑的数据

GET test/chunsheng/_search
{
"query":{
"match": {
"tags": "黑"
}
}
}

返回结果:

#! Deprecation: [types removal] Specifying types in search requests is deprecated.
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 1.0596458,
"hits" : [
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "1",
"_score" : 1.0596458,
"_source" : {
"name" : "春生",
"age" : 18,
"from" : "gu",
"desc" : "皮肤黑,武器长,性格直",
"tags" : [
"黑",
"长",
"直"
]
}
}
]
}
}

既然按照标签检索,那么,能不能写多个标签呢?又该怎么写呢?

GET test/chunsheng/_search
{
"query":{
"match": {
"tags": "黑 白"
}
}
}

多个标签要空格分开

返回结果:

#! Deprecation: [types removal] Specifying types in search requests is deprecated.
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 2,
"relation" : "eq"
},
"max_score" : 1.0596458,
"hits" : [
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "1",
"_score" : 1.0596458,
"_source" : {
"name" : "春生",
"age" : 18,
"from" : "gu",
"desc" : "皮肤黑,武器长,性格直",
"tags" : [
"黑",
"长",
"直"
]
}
},
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "2",
"_score" : 1.0596458,
"_source" : {
"name" : "大娘子",
"age" : 18,
"from" : "sheng",
"desc" : "肤白貌美,就是腿长",
"tags" : [
"白",
"富",
"美"
]
}
}
]
}
}

上列中我发现 只要含有这个标签就给我返回这个数据了。

那现在 我要查询。如 “腿长” 有就直接返回 没有不要了 不需要包含

match_phrase

GET test/chunsheng/_search
{
"query":{
"match_phrase": {
"desc": "腿 长"
}
}
}

返回结果:

#! Deprecation: [types removal] Specifying types in search requests is deprecated.
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 1.580115,
"hits" : [
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "2",
"_score" : 1.580115,
"_source" : {
"name" : "大娘子",
"age" : 18,
"from" : "sheng",
"desc" : "肤白貌美,就是腿长",
"tags" : [
"白",
"富",
"美"
]
}
}
]
}
}

term查询精确查询

term查询是直接通过倒排索引指定的 词条,也就是精确查找。

term和match的区别:

  • match是经过分析(analyer)的,也就是说,文档是先被分析器处理了,根据不同的分析器,分析出的结果也会不同,在会根据分词 结果进行匹配。
  • term是不经过分词的,直接去倒排索引查找精确的值。
term与match的区别

注意 ⚠️:我们现在 用的es7版本 所以我们用 mappings properties 去给多个字段(fields)指定类型的时候 不能给我们的 索引制定类型:

PUT db_test
{
"mappings": {
"properties": {
"name":{
"type":"text"
},
"hoy":{
"type": "keyword"
}
}
}
}
# 插入数据
PUT db_test/_doc/1
{
"name":"我是 name",
"hoy":"我是 hoy"
}

上述中db_test索引中,字段name在被查询时会被分析器进行分析后匹配查询。而属于keyword类型不会被分析器处理

我们来验证一下:

GET _analyze
{
"analyzer": "keyword",
"text": "我是 name"
}

结果:

{
"tokens" : [
{
"token" : "我是 name",
"start_offset" : 0,
"end_offset" : 7,
"type" : "word",
"position" : 0
}
]
}

是不是没有被分析啊。就是简单的一个字符串啊

GET _analyze
{
"analyzer": "standard",
"text": "我是 name"
}

结果:

{
"tokens" : [
{
"token" : "我",
"start_offset" : 0,
"end_offset" : 1,
"type" : "<IDEOGRAPHIC>",
"position" : 0
},
{
"token" : "是",
"start_offset" : 1,
"end_offset" : 2,
"type" : "<IDEOGRAPHIC>",
"position" : 1
},
{
"token" : "name",
"start_offset" : 3,
"end_offset" : 7,
"type" : "<ALPHANUM>",
"position" : 2
}
]
}

那么我们看一下 们字符串是不是被分析了啊。

总结:

  • keyword 字段类型不会被分析器分析

现在我们来查询一下:

GET db_test/_search # 是通过 被分析器分析 查询
{
"query": {
"term": {
"name":"我"
}
}
} GET db_test/_search # keyword 不回被分析所以直接查询
{
"query": {
"match": {
"hoy":"我是 hoy"
}
}
}
查找多个精确值(terms)
PUT db_test/_doc/2
{
"t1": "20",
"t2": "2019-4-16"
}
PUT db_test/_doc/3
{
"t1": "30",
"t2": "2019-4-17"
}
# 查询 精确查找多个值
GET db_test/_search
{
"query": {
"bool": {
"should": [
{
"term": {
"t1": "20"
}
},
{
"term": {
"t1": "30"
}
}
]
}
}
}

除了bool查询之外

GET db_test/_doc/_search
{
"query": {
"terms": {
"t1": ["20", "30"]
}
} }
GET db_test/_doc/_search
{
"query": {
"terms": {
"t2": ["2019-4-16", "2019-4-17"]
}
} }

官网:see also:Term Query | 查找多个精确值

高亮显示

GET test/chunsheng/_search
{
"query":{
"match": {
"name": "春生"
}
},
"highlight" :{
"fields": {
"name":{}
}
}
}

返回结果:

#! Deprecation: [types removal] Specifying types in search requests is deprecated.
{
"took" : 41,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 2.271394,
"hits" : [
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "1",
"_score" : 2.271394,
"_source" : {
"name" : "春生",
"age" : 18,
"from" : "gu",
"desc" : "皮肤黑,武器长,性格直",
"tags" : [
"黑",
"长",
"直"
]
},
"highlight" : {
"name" : [
"<em>春</em><em>生</em>"
]
}
}
]
}
}

我们可以看到 "<em>春</em><em>生</em>"已经帮我们加上了一个<em>标签

这是es帮我们加的标签。那我·也可以自己自定义样式

自定义高亮显示

GET test/chunsheng/_search
{
"query":{
"match": {
"name": "春生"
}
},
"highlight" :{
"pre_tags": "<b class='key' style='color:red'>",
"post_tags": "</b>",
"fields": {
"name":{}
}
}
}

返回结果:

#! Deprecation: [types removal] Specifying types in search requests is deprecated.
{
"took" : 2,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1,
"relation" : "eq"
},
"max_score" : 2.271394,
"hits" : [
{
"_index" : "test",
"_type" : "chunsheng",
"_id" : "1",
"_score" : 2.271394,
"_source" : {
"name" : "春生",
"age" : 18,
"from" : "gu",
"desc" : "皮肤黑,武器长,性格直",
"tags" : [
"黑",
"长",
"直"
]
},
"highlight" : {
"name" : [
"<b class='key' style='color:red'>春</b><b class='key' style='color:red'>生</b>"
]
}
}
]
}
}

需要注意的是:自定义标签中属性或样式中的逗号一律用英文状态的单引号表示,应该与外部 es 语法 的双引号区分开。

Deprecation

注意 elasticsearch 在第一个版本的开始 每个文档都储存在一个索引中,并分配一个 映射类型,映射类型用于表示被索引的文档或者实体的类型,这样带来了一些问题 (详情:https://www.cnblogs.com/Neeo/articles/10393961.html#important)导致后来在 elasticsearch6.0.0 版本中一个文档只能包含一个映射类型,而在 7.0.0 中,映 射类型则将被弃用,到了 8.0.0 中则将完全被删除。

解释一下警告信息:

#! Deprecation: [types removal] Specifying types in document index requests is deprecated, use the typeless endpoints instead (/{index}/_doc/{id}, /{index}/_doc, or /{index}/_create/{id}).

#!Deprecation: [types removal]不支持在文档索引请求中指定类型,而是使用无类型的端点(/{index}/_doc/{id}, /{index}/_doc,或/{index}/_create/{id})。

#! Deprecation: [types removal] Specifying types in search requests is deprecated.

#!Deprecation: [types removal]不赞成在搜索请求中指定类型

我们 7 版本 兼容了 6版本 但是 已经被弃用了 我们的类型还是能用的。在8版本 就完全删除了。

elasticsearch 7版本 基础操作的更多相关文章

  1. Elasticsearch第二篇:基本概念和基础操作

    上一篇文章,我们已经是在Windows10 上搭建了 Elasticsearch 环境已经安装了相关的插件,现在我们就可以像操作webapi一样简单的操作 ElasticSearch 了,有园友说可以 ...

  2. Elasticsearch学习系列二(基础操作)

    本文将分为3块讲解Es的基础操作.分别为:索引(index).映射(mapping).文档(document). 索引操作 创建索引库 语法: PUT /索引名称{ "settings&qu ...

  3. 使用Hive或Impala执行SQL语句,对存储在Elasticsearch中的数据操作

    http://www.cnblogs.com/wgp13x/p/4934521.html 内容一样,样式好的版本. 使用Hive或Impala执行SQL语句,对存储在Elasticsearch中的数据 ...

  4. Elasticsearch索引和文档操作

    列出所有索引 现在来看看我们的索引 GET /_cat/indices?v 响应 health status index uuid pri rep docs.count docs.deleted st ...

  5. 使用Hive或Impala执行SQL语句,对存储在Elasticsearch中的数据操作(二)

    CSSDesk body { background-color: #2574b0; } /*! zybuluo */ article,aside,details,figcaption,figure,f ...

  6. Git基础操作

    配置秘钥 1.检查本机有没有秘钥 检查~/.ssh看看是否有名为d_rsa.pub和id_dsa.pub的2个文件. $ ~/.sshbash: /c/Users/lenovo/.ssh: Is a ...

  7. 《Genesis-3D开源游戏引擎-官方录制系列视频教程:基础操作篇》

    注:本系列教程仅针对引擎编辑器:v1.2.2及以下版本 G3D基础操作   第一课<G3D编辑器初探> G3D编辑器介绍,依托于一个复杂场景,讲解了场景视图及其基本操作,属性面板和工具栏的 ...

  8. ArcGIS Pro 简明教程(2)基础操作和简单制图

    ArcGIS Pro 简明教程(2)基础操作和简单制图 By 李远祥 本章主要介绍ArcGIS Pro如何加载数据并进行简单的地图制作,以基本的操作为主. 上一章节介绍过,ArcGIS Pro是可以直 ...

  9. 项目实战12.1—企业级监控工具应用实战-zabbix安装与基础操作

    无监控,不运维.好了,废话不多说,下面都是干货. 警告:流量党勿入,图片太多!!! 项目实战系列,总架构图 http://www.cnblogs.com/along21/p/8000812.html ...

随机推荐

  1. Java与.net 关于URL Encode 的区别

    在c#中,HttpUtility.UrlEncode("www+mzwu+com")编码结果为www%2bmzwu%2bcom,在和Java开发的平台做对接的时候,对方用用url编 ...

  2. SEO前端篇(二)关键词

    首先要SEO的关键词最好放在网站首页index,并且网站域名选用顶级域名,最好是.com.现在很多后缀的域名不能备案,选择域名的时候一定要慎重. 域名解析的主机IP最好选择站点资源少的区域,可以用 爱 ...

  3. 【翻译】Flink Table Api & SQL — SQL

    本文翻译自官网:SQL https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table/sql.html Flink Tab ...

  4. Hack The Box Web Pentest 2017

    [20 Points] Lernaean [by [Arrexel] 问题描述: Your target is not very good with computers. Try and guess ...

  5. 【剑指offer】面试题 8. 二叉树的下一个结点

    面试题 8. 二叉树的下一个结点 NowCoder 题目描述 给定一棵二叉树和其中的一个结点,如何找出中序遍历顺序的下一个结点?树中的结点除了有两个分别指向左右子结点的指针以外,还有一个指向父结点的指 ...

  6. MySQL数据库去重 SQL解决

    MySQL数据库去重的方法 ​ 数据库最近有很多重复的数据,数据量还有点大,本想着用代码解决,后来发现用SQL就能解决,这里记录一下 看这条SQL DELETE consum_record FROM ...

  7. P3275 [SCOI2011]糖果 题解

    一道差分约束的模板题. 题目 题意:n个人每个人至少一个糖果,另外要满足k个不等式,求最少糖果数. 差分约束系统 给定一组不等式 $ x[i]-x[j]<=c[k] $ (或 $ x[i]-x[ ...

  8. 关于MSVCR100.dll、MSVCR100d.dll、Msvcp100.dll、abort()R6010等故障模块排查及解决方法

    一.常见故障介绍 最近在开发相机项目(项目细节由于公司保密就不介绍了),程序运行5个来月以来首次出现msvcr100.dll故障等问题,于是乎开始了分析之路,按照度娘上的一顿操作,期间也是出现了各种不 ...

  9. OpenJDK自动安装脚本 InstallOpenJDK.vbs

    Oracle JDK 要收费了,Open JDK没有安装包,只有Zip,写了个安装脚本 InstallOpenJDK.vbs Rem ********************************* ...

  10. pip下载加速的方式

    两种方式 一.临时方式 可以在使用pip的时候加参数-i https://pypi.tuna.tsinghua.edu.cn/simple. 例如下载或者更新: 下载:pip install -i h ...