传送门

题目大意:给出一个长度为\(n\)的序列\(a_i\),序列中每一个数可以取\(1\)到\(D\)中的所有数。问共有多少个序列满足:设\(p_i\)表示第\(i\)个数在序列中出现的次数,\(\sum\limits_{i=1}^D \lfloor \frac{p_i}{2} \rfloor \geq m\)。\(D \leq 10^5 , 0 \leq m \leq n \leq 10^9\)


在有生之年切掉laofu的多项式题,全场唯一一个写多项式求逆的,其他人都直接卷积,然后发现自己的做法其实并不需要多项式求逆……

首先上面的条件等价于:\(\sum\limits_{i=1}^D [2 \not\mid p_i] \leq n - 2m\)。那么一种想法是求出强制其中\(n - 2m + 1\)个数字出现次数为奇数,其他的数出现次数为偶数。那么这样的方案数是\(\binom{D}{n - 2m + 1} [x^n](\frac{e^x - e^{-x}}{2})^{n - 2m + 1} (\frac{e^x + e^{-x}}{2})^{D - (n - 2m + 1)}\),非常难算。不妨考虑容斥计算。

先做几个特判:\(n < 2m\)时答案为\(0\);\(D < n - 2m + 1\)时答案为\(D^n\)。

不妨设\(f_i\)表示强制其中\(i\)个数字出现次数为奇数,其他的数出现次数随意的方案数,那么\(f_i = \binom{D}{i} [x^n](\frac{e^x - e^{-x}}{2})^{i} e^{(D - i)x}\),经过化简可以得到\(f_i = i! \binom{D}{i} \frac{1}{2^i} \sum\limits_{j=0}^i \frac{(-1)^j (D - 2j)^n}{(i-j)!j!}\)。不难发现后面是一个卷积形式,使用\(NTT\)在\(O(DlogD)\)的时间复杂度内可以求出所有的\(f_i\)。

然后又设\(g_i\)表示恰好\(i\)个数字出现奇数次的方案数,就和HAOI2018 染色一样用NTT加速二项式反演即可。

最后答案就是\(\sum\limits_{i=0}^{n - 2m} g_i\)。

代码

LOJ3120 CTS2019 珍珠 生成函数、二项式反演、NTT的更多相关文章

  1. Codeforces 923E - Perpetual Subtraction(微积分+生成函数+推式子+二项式反演+NTT)

    Codeforces 题目传送门 & 洛谷题目传送门 神仙题 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 首先考虑最朴素的 \(dp\),设 \(dp_{z,i}\) 表示经 ...

  2. BZOJ 5306: [Haoi2018]染色 二项式反演+NTT

    给定长度为 $n$ 的序列, 每个位置都可以被染成 $m$ 种颜色中的某一种. 如果恰好出现了 $s$ 次的颜色有 $k$ 种, 则会产生 $w_{k}$ 的价值. 求对于所有可能的染色方案,获得价值 ...

  3. 【CTS2019】珍珠【生成函数,二项式反演】

    题目链接:洛谷 pb大佬说这是sb题感觉好像有点过fan...(我还是太弱了) 首先,设$i$这个数在序列中出现$a_i$次,要求$\sum_{i=1}^D[a_i \ mod \ 2]\leq n- ...

  4. 洛谷 P5401 - [CTS2019]珍珠(NTT+二项式反演)

    题面传送门 一道多项式的 hot tea 首先考虑将题目的限制翻译成人话,我们记 \(c_i\) 为 \(i\) 的出现次数,那么题目的限制等价于 \(\sum\limits_{i=1}^D\lflo ...

  5. [CTS2019]珍珠——二项式反演

    [CTS2019]珍珠 考虑实际上,统计多少种染色方案,使得出现次数为奇数的颜色数<=n-2*m 其实看起来很像生成函数了 n很大?感觉生成函数会比较整齐,考虑生成函数能否把n放到数值的位置,而 ...

  6. 【题解】CTS2019珍珠(二项式反演+卷积)

    [题解]CTS2019珍珠 题目就是要满足这样一个条件\(c_i\)代表出现次数 \[ \sum {[\dfrac {c_i } 2]} \ge 2m \] 显然\(\sum c_i=n\)所以,而且 ...

  7. 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)

    [题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...

  8. LOJ3119 CTS2019 随机立方体 概率、容斥、二项式反演

    传送门 为了方便我们设\(N\)是\(N,M,L\)中的最小值,某一个位置\((x,y,z)\)所控制的位置为集合\(\{(a,b,c) \mid a = x \text{或} b = y \text ...

  9. [LOJ3119][CTS2019|CTSC2019]随机立方体:组合数学+二项式反演

    分析 感觉这道题的计数方法好厉害.. 一个直观的思路是,把题目转化为求至少有\(k\)个极大的数的概率. 考虑这样一个事实,如果钦定\((1,1,1),(2,2,2),...,(k,k,k)\)是那\ ...

随机推荐

  1. CF888G 【Xor-MST】

    妙妙题-- 看到\(MST\),想到\(Kruskal\),看到异或,想到\(Trie\) 首先我们模拟一下\(Kruskal\)的流程:找到最小边,如果联通就忽略,未联通就加边 我们把所有点权值加入 ...

  2. SuperHyperMarket(优先队列+重载)

    SuperHyperMarket(优先队列+重载) 具体见代码注释 /* */ #include <iostream> #include <cstring> #include ...

  3. Centos 7配置nginx反向代理负载均衡集群

    一,实验介绍 利用三台centos7虚拟机搭建简单的nginx反向代理负载集群, 三台虚拟机地址及功能介绍 192.168.2.76    nginx负载均衡器 192.168.2.82    web ...

  4. 【算法编程 C++ Python】二维数组查找

    题目: 在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. 思路: 最简单:每一行都 ...

  5. javascript如何动态修改iframe的src

    为什么需要动态修改iframe的src?一般情况我们使用iframe,其中的src通常是写死的,但是有些时候我们不希望它是死的src,而是一个活的src. 示例代码如下: <!DOCTYPE h ...

  6. golang模拟编程tcp模拟http(转载)

    package main import ( "fmt" "net" "strconv" ) //用来转化int为string type In ...

  7. MYSQL 什么时候用单列索引?什么使用用联合索引?

    我一个表 students 表,有3个字段 ,id,name,age 我要查询 通过 name 和age,在这两个字段 是创建 联合索引?还是分别在name和age上创建 单列索引呢? 多个字段查询什 ...

  8. npm版本管理 命令

    npm采用了semver规范作为依赖版本管理方案.semver 约定一个包的版本号必须包含3个数字 MAJOR.MINOR.PATCH 意思是 主版本号.小版本号.修订版本号 MAJOR 对应大的版本 ...

  9. 网易云音乐MP3外链地址

      网易云音乐MP3外链地址下载方法很简单的方法: 下载公式:http://music.163.com/song/media/outer/url?id=ID数字.mp3 把上面红色部分(ID数字)换成 ...

  10. php 类的属性--???

    <?php class Car { private function __construct() { echo 'object create'; } private static $_objec ...