大意: $n$个骑士, 第$i$个骑士若加入光明阵营, 那么能力值$L_i$, 加入黑暗阵营, 能力值$D_i$. 给定$m$个限制$(u_i,v_i)$, 表示$u_i,v_i$不能在同一阵营. 求一种划分方案, 使得能力值最大值减最小值最小.

对于一个连通块, 如果不是二分图, 那么无解. 否则的话这个连通块最大值最小值只有两种情况, 枚举最大值, 求出最小值的最大可能值更新答案即可.

#include <iostream>
#include <sstream>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <cstring>
#include <bitset>
#include <functional>
#include <random>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
#define DB(a) ({REP(__i,1,n) cout<<a[__i]<<',';hr;})
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int P = 1e9+7, INF = 0x3f3f3f3f;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
//head const int N = 1e6+50;
int n,m,ok,vis[N],l[N],d[N],mi[N],ID[N],cur[N];
vector<int> g[N];
pii f[N],A,B; void dfs(int x, int c) {
vis[x] = c;
if (c) {
A.x = min(A.x,l[x]);
A.y = max(A.y,l[x]);
B.x = min(B.x,d[x]);
B.y = max(B.y,d[x]);
}
else {
A.x = min(A.x,d[x]);
A.y = max(A.y,d[x]);
B.x = min(B.x,l[x]);
B.y = max(B.y,l[x]);
}
for (int y:g[x]) {
if (vis[y]<0) dfs(y,c^1);
else if (vis[y]==c) ok=0;
}
} void work() {
scanf("%d%d",&n,&m);
REP(i,1,n) vis[i]=-1,g[i].clear();
REP(i,1,m) {
int u, v;
scanf("%d%d",&u,&v);
g[u].pb(v),g[v].pb(u);
}
REP(i,1,n) scanf("%d%d",l+i,d+i);
ok = 1;
vector<pii> events;
int cnt = 0;
multiset<int> s;
REP(i,1,n) if (vis[i]<0) {
A = B = {1e9,0};
dfs(i, 0);
if (!ok) return puts("IMPOSSIBLE"),void();
s.insert(cur[i]=-INF);
ID[cnt]=i,mi[cnt]=A.x,events.pb(pii(A.y,cnt)),++cnt;
ID[cnt]=i,mi[cnt]=B.x,events.pb(pii(B.y,cnt)),++cnt;
}
sort(events.begin(),events.end());
int ans = 1e9;
for (auto &p:events) {
s.erase(s.find(cur[ID[p.y]]));
cur[ID[p.y]] = max(cur[ID[p.y]], mi[p.y]);
s.insert(cur[ID[p.y]]);
ans = min(ans, p.x-*s.begin());
}
printf("%d\n", ans);
} int main() {
int t=rd();
REP(i,1,t) {
printf("Case %d: ",i);
work();
}
}

Gym 102055B Balance of the Force的更多相关文章

  1. 2018CCPCFINAL B Balance of the Force 枚举最大值

    题意 n个人能选择黑暗面和光明面,选择两个面分别能获得\(L_i\)和\(R_i\)的力量,有m对人不能选择同一面,问n个人的力量中的最大值-最小值尽可能小为多少. \(1<=n<=2\t ...

  2. 模拟赛小结:2018 China Collegiate Programming Contest Final (CCPC-Final 2018)

    比赛链接:传送门 跌跌撞撞6题摸银. 封榜后两题,把手上的题做完了还算舒服.就是罚时有点高. 开出了一道奇奇怪怪的题(K),然后ccpcf银应该比区域赛银要难吧,反正很开心qwq. Problem A ...

  3. martini-能量最小化参数(mdp文件)

    1 ; 2 ; STANDARD MD INPUT OPTIONS FOR MARTINI 2.x 3 ; Updated 02 feb 2013 by DdJ 4 ; 5 ; for use wit ...

  4. martini-md参数(mdp文件)

    输入参数:一个典型的mdp文件 1 ; 2 ; STANDARD MD INPUT OPTIONS FOR MARTINI 2.x 3 ; Updated 02 feb 2013 by DdJ 4 ; ...

  5. 每日英语:Boost Your Balance; Avoid Falls

    If you find yourself needing to sit down to take off your shoes, it might be time to start paying at ...

  6. 强化学习之MountainCarContinuous(注册自己的gym环境)

    目录 1. 问题概述 2. 环境 2.1 Observation & state 2.2 Actions 2.3 Reward 2.4 初始状态 2.5 终止状态- Episode Termi ...

  7. ACM: Gym 101047M Removing coins in Kem Kadrãn - 暴力

     Gym 101047M Removing coins in Kem Kadrãn Time Limit:2000MS     Memory Limit:65536KB     64bit IO Fo ...

  8. ACM: Gym 101047K Training with Phuket's larvae - 思维题

     Gym 101047K Training with Phuket's larvae Time Limit:2000MS     Memory Limit:65536KB     64bit IO F ...

  9. ACM: Gym 101047E Escape from Ayutthaya - BFS

    Gym 101047E Escape from Ayutthaya Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I6 ...

随机推荐

  1. 65、Spark Streaming:数据接收原理剖析与源码分析

    一.数据接收原理 二.源码分析 入口包org.apache.spark.streaming.receiver下ReceiverSupervisorImpl类的onStart()方法 ### overr ...

  2. C# 最简单的使程序单进程运行的方法

    1.代码1 static void Main() { Process current = Process.GetCurrentProcess(); Process[] processes = Proc ...

  3. Innodb的redo log block

  4. (九)Knockout 进一步技术

    加载和保存 JSON 数据 Knockout允许您实现复杂的客户端交互,但是几乎所有web应用程序还需要与服务器交换数据,或者至少要序列化数据以供本地存储.交换或存储数据最方便的方式是JSON格式-- ...

  5. odoo开发笔记--ValueError Expected singleton

    异常处理参考:https://stackoverflow.com/questions/31070640/valueerror-expected-singleton-odoo8 报错: ValueErr ...

  6. vue中使用极验验证码(附demo)

    前言: vue中使用极验验证码,最好是在页面渲染的时候(mounted)进行验证码的初始化,然后在初始化回调中绑定触发弹出验证码的事件.这样在点击按钮或者进行特定操作时能够快速的弹出验证码. 关键代码 ...

  7. 微信小程序开发——base64位图片显示问题

    前言: 目前小程序项目需要后端借口提供验证码图片,后端是以base64位返回的,按照H5的做法,前边拼上 data:image/png;base64, 应该就可以了,关键代码如下: H5: <i ...

  8. 必须要注意的 C++ 动态内存资源管理(二)——指针对象简单实现

    必须要注意的 C++动态内存资源管理(二)——指针对象简单实现 四.拷贝类型的资源         上节我们说过,对于图片类型的资源我们有时候往往采用拷贝(如果对于那种公共图片,可能采用唯一副本,提供 ...

  9. CFCA证书工具类

    jar:com.cfca.pkibase-1.0.jar import java.io.UnsupportedEncodingException; import java.security.Secur ...

  10. Ubuntu新建用户并指定目录

    例如我要新建一个nginx用户,并指定目录,允许使用bash登录 sudo useradd -d "/home/nginx" -m -s "/bin/bash" ...