Poj 2018 Best Cow Fences(分数规划+DP&&斜率优化)
Best Cow Fences
Time Limit: 1000MS Memory Limit: 30000K
Description
Farmer John’s farm consists of a long row of N (1 <= N <= 100,000)fields. Each field contains a certain number of cows, 1 <= ncows <= 2000.
FJ wants to build a fence around a contiguous group of these fields in order to maximize the average number of cows per field within that block. The block must contain at least F (1 <= F <= N) fields, where F given as input.
Calculate the fence placement that maximizes the average, given the constraint.
Input
* Line 1: Two space-separated integers, N and F.
* Lines 2..N+1: Each line contains a single integer, the number of cows in a field. Line 2 gives the number of cows in field 1,line 3 gives the number in field 2, and so on.
Output
* Line 1: A single integer that is 1000 times the maximal average.Do not perform rounding, just print the integer that is 1000*ncows/nfields.
Sample Input
10 6
6
4
2
10
3
8
5
9
4
1
Sample Output
6500
Source
USACO 2003 March Green
/*
01分数规划思想+DP做法.
求长度不小于k连续一段的最大平均值.
ans=(sum[j]-sum[i-1])/(j-i+1) [j-i+1>=k]
这样的话我们二分一个ans,然后让每个数都减去ans.
最后DP检验最大的连续和是否大于0即可.
复杂度O(nlogn).
*/
#include<iostream>
#include<cstdio>
#define MAXN 100001
#define eps 1e-6
using namespace std;
double ans,s[MAXN],sum[MAXN],max1,min1=1e9;
int n,k;
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
bool check(double x)
{
double tot,m=0;
for(int i=1;i<=n;i++) sum[i]=sum[i-1]+s[i]-x;
for(int i=k;i<=n;i++)
{
tot=sum[i]-m;
if(tot>=0) return true;
m=min(m,sum[i-k+1]);
}
return false;
}
void erfen(double l,double r)
{
double mid;
while(l+eps<=r)
{
mid=(l+r)/2;
if(check(mid)) ans=mid,l=mid;
else r=mid;
}
int x=r*1000;
printf("%d\n",x);
return ;
}
int main()
{
int x;
while(~scanf("%d %d",&n,&k))
{
max1=0,min1=1e9;
for(int i=1;i<=n;i++)
{
s[i]=read();
sum[i]=sum[i-1]+s[i];
max1=max(max1,s[i]),min1=min(min1,s[i]);
}
erfen(min1,max1);
}
return 0;
}
/*
斜率优化题.
通过此题大概知道了斜率优化是什么.
因为ans=(sum[j]-sum[i-1])/(j-i+1) [j-i+1>=k].
所以我们可以将看做二维平面中的两个点(i-1,sum[i])和(j,sum[j]).
ans即为两点之间的斜率.
我们要让ans最大化.
n^2的暴力可以看做是有一个点t,和点集Gt{x,0<=x<=t-k},
扫描G中的每个点,使斜率最大化.
但是有些点对于决策是没有影响的.
现在有一个定理:
存在三个有序点i,j,k,如果满足k(i,j)>k(k,j)
即j点是直线ik上方的点,那它不会对决策产生影响.
证明的话见2004周源国家集训队论文,讲的很清楚.
这样的话我们维护一个下凸折线就好了.
我们每次都加入位置为i-k的点,维护下凸性.
如果某一点j(0<=j<=i-k)与点i的斜率最大,
则这个点显然一定是下凸折线的切点.
则它之前的点连线斜率较小也不会对决策产生影响
删掉就可以了.
这样的话由于每个点只入队出队一次
所以复杂度是O(n)的.
参考资料 2004周源国家集训队论文.
*/
#include<iostream>
#include<cstdio>
#define MAXN 100001
using namespace std;
double ans,sum[MAXN],max1,min1=1e9;
int n,k;
struct data{double x,y;}q[MAXN];
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
double check(data a,data b,data c)
{
return (b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y);
}
double Get(data a,data b)
{
return (b.y-a.y)/(b.x-a.x);
}
void slove()
{
data x,now;ans=0;
int head=0,tail=0;
for(int i=k;i<=n;i++)
{
x.x=i-k,x.y=sum[i-k];
while(tail-head>=2&&check(q[tail-2],q[tail-1],x)<0) tail--;//维护下凸性.
q[tail++]=x;
now.x=i,now.y=sum[i];
double k=Get(q[head],now);
while(tail-head>0&&Get(q[head+1],now)>k)//删除没用的点.
{
k=Get(q[head+1],now);
head++;
}
ans=max(ans,k);
}
ans*=1000;
int a=ans;
printf("%d\n",a);
}
int main()
{
int x;
while(~scanf("%d %d",&n,&k))
{
for(int i=1;i<=n;i++)
x=read(),sum[i]=sum[i-1]+x;
slove();
}
return 0;
}
Poj 2018 Best Cow Fences(分数规划+DP&&斜率优化)的更多相关文章
- POJ 2018 Best Cow Fences (二分答案构造新权值 or 斜率优化)
$ POJ~2018~Best~Cow~ Fences $(二分答案构造新权值) $ solution: $ 题目大意: 给定正整数数列 $ A $ ,求一个平均数最大的长度不小于 $ L $ 的子段 ...
- POJ 2018 Best Cow Fences(二分+最大连续子段和)
Best Cow Fences Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 14601 Accepted: 4720 Desc ...
- BZOJ2402: 陶陶的难题II(树链剖分,0/1分数规划,斜率优化Dp)
Description Input 第一行包含一个正整数N,表示树中结点的个数.第二行包含N个正实数,第i个数表示xi (1<=xi<=10^5).第三行包含N个正实数,第i个数表示yi ...
- POJ 2018 Best Cow Fences(二分答案)
题目链接:http://poj.org/problem?id=2018 题目给了一些农场,每个农场有一定数量的奶牛,农场依次排列,问选择至少连续排列F个农场的序列,使这些农场的奶牛平均数量最大,求最大 ...
- POJ 2018 Best Cow Fences(二分最大区间平均数)题解
题意:给出长度>=f的最大连续区间平均数 思路:二分这个平均数,然后O(n)判断是否可行,再调整l,r.判断方法是,先求出每个数对这个平均数的贡献,再求出长度>=f的最大贡献的区间,如果这 ...
- POJ 2018 Best Cow Fences
斜率优化. 设$s[i]$表示前缀和,$avg(i,j)=(s[j]-s[i-1])/(j-(i-1))$.就是$(j,s[j])$与$(i-1,s[i-1])$两点之间的斜率. 如果,我们目前在计算 ...
- 【BZOJ-4518】征途 DP + 斜率优化
4518: [Sdoi2016]征途 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 230 Solved: 156[Submit][Status][ ...
- 【BZOJ-3437】小P的牧场 DP + 斜率优化
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 705 Solved: 404[Submit][Status][Discuss ...
- 【BZOJ-1010】玩具装箱toy DP + 斜率优化
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8432 Solved: 3338[Submit][St ...
随机推荐
- [LOJ3083] [GXOI2019] 与或和
题目链接 LOJ:https://loj.ac/problem/3083 洛谷:https://www.luogu.org/problemnew/show/P5300 Solution 逐位考虑,可以 ...
- 记一次在 Get 请求参数为 Null 值的折腾
先说主要原因,是因为一个 NgZerro 的 Select 组件,需要显示 placeHolder 文字,初始值为 null,然后直接绑定到查询参数中,传输到后端导致 BadRequest,参数解析失 ...
- HTML学习摘要5
DAY 5 HTML <address> 元素定义文档或文章的联系信息(作者/拥有者). 此元素通常以斜体显示.大多数浏览器会在此元素前后添加折行. HTML <cite> 元 ...
- 用于RISC-V的Makefile示例
# Initialize ASM For RISC-V .section .text.entry .option norvc .global _start .macro push_reg addi s ...
- 1-Spark-1-性能调优-数据倾斜1-特征/常见原因/后果/常见调优方案
数据倾斜特征:个别Task处理大部分数据 后果:1.OOM;2.速度变慢,甚至变得慢的不可接受 常见原因: 数据倾斜的定位: 1.WebUI(查看Task运行的数据量的大小). 2.Log,查看log ...
- web中cookie和session_转
转自:Python爬虫番外篇之Cookie和Session python修行路 关于cookie和session估计很多程序员面试的时候都会被问到,这两个概念在写web以及爬虫中都会涉及,并且两者可 ...
- 批处理引擎MapReduce程序设计
批处理引擎MapReduce程序设计 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.MapReduce API Hadoop同时提供了新旧两套MapReduce API,新AP ...
- djangCrm
---恢复内容开始--- 一> 在数据库进行循环取多对多 def get_classlist(self): l=[] for cls in self.class_list.all(): l.ap ...
- asp、aspx、php、jsp万能密码大全【笔记】
asp aspx万能密码 1:"or "a"="a 2: ')or('a'='a 3:or 1=1-- 4:'or 1=1-- 5:a'or' 1=1-- 6: ...
- docker 进程 转载:https://www.cnblogs.com/ilinuxer/p/6188303.html
今天我们会分析Docker中进程管理的一些细节,并介绍一些常见问题的解决方法和注意事项. 容器的PID namespace(名空间) 在Docker中,进程管理的基础就是Linux内核中的PID名空间 ...