Luogu5591 小猪佩奇学数学 【单位根反演】
题目链接:洛谷
\[
Ans=\frac{1}{k}(\sum_{i=0}^n\binom{n}{i}p^ii-\sum_{i=0}^n\binom{n}{i}p^i(i \ \mathrm{mod} \ k))
\]
\[
\begin{aligned}
Ans&=\sum_{i=0}^n\binom{n}{i}p^i(i \ \mathrm{mod} \ k) \\
&=\sum_{d=0}^{k-1}\sum_{i=0}^n\binom{n}{i}p^id((i-d) \ \mathrm{mod} \ k=0) \\
&=\frac{1}{k}\sum_{d=0}^{k-1}\sum_{i=0}^n\binom{n}{i}p^id\sum_{j=0}^{k-1}w_k^{(i-d)j} \\
&=\frac{1}{k}\sum_{d=0}^{k-1}d\sum_{j=0}^{k-1}w_k^{-dj}\sum_{i=0}^n\binom{n}{i}(pw_k^{j})^i \\
&=\frac{1}{k}\sum_{d=0}^{k-1}d\sum_{j=0}^{k-1}w_k^{-dj}(pw_k^j+1)^n \\
&=\frac{1}{k}\sum_{i=0}^{k-1}(pw_k^i+1)^n\sum_{d=0}^{k-1}d(w_k^{-i})^d
\end{aligned}
\]
现在推推后面一部分。
\[
\begin{aligned}
S&=\sum_{i=0}^{k-1}ix^i \\
&=\sum_{i=0}^{k-1}(i+1)x^{i+1}-kx^k \\
&=x\sum_{i=0}^{k-1}ix^i+\sum_{i=0}^{k-1}x^i-kx^k \\
&=xS+\frac{1-x^k}{1-x}-kx^k \\
(1-x)S&=\frac{1-x^k}{1-x}-kx^k \\
\because x^k&=1\\
S&=\frac{k}{1-x} \\
Ans&=\frac{(p+1)^n(k-1)}{2}+\sum_{i=1}^{k-1}\frac{(pw_k^i+1)^n}{1-w_k^{-i}}
\end{aligned}
\]
还有一部分
\[
\begin{aligned}
Ans&=\sum_{i=0}^n\binom{n}{i}p^ii \\
&=np\sum_{i=0}^{n-1}\binom{n-1}{i}p^i \\
&=np(p+1)^{n-1}
\end{aligned}
\]
Luogu5591 小猪佩奇学数学 【单位根反演】的更多相关文章
- P5591 小猪佩奇学数学
P5591 小猪佩奇学数学 知识点 二项式定理 \[(x+1)^n=\sum_{i=0}^n\binom nix^i \] 单位根反演 \[[n\mid k]=\frac 1n\sum_{i=0}^{ ...
- P5591-小猪佩奇学数学【单位根反演】
正题 题目链接:https://www.luogu.com.cn/problem/P5591 题目大意 给出\(n,p,k\)求 \[\left(\sum_{i=0}^n\binom{n}{i}p^i ...
- loj 6485 LJJ学二项式定理 —— 单位根反演
题目:https://loj.ac/problem/6485 先把 \( a_{i mod 4} \) 处理掉,其实就是 \( \sum\limits_{i=0}^{3} a_{i} \sum\lim ...
- [LOJ 6485]LJJ学二项式定理(单位根反演)
也许更好的阅读体验 \(\mathcal{Description}\) 原题链接 \(T\)组询问,每次给\(n,s,a_0,a_1,a_2,a_3\)求 \(\begin{aligned}\left ...
- LOJ 6485 LJJ 学二项式定理——单位根反演
题目:https://loj.ac/problem/6485 \( \sum\limits_{k=0}^{3}\sum\limits_{i=0}^{n}C_{n}^{i}s^{i}a_{k}[4|(i ...
- loj #6485. LJJ 学二项式定理 单位根反演
新学的黑科技,感觉好nb ~ #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s". ...
- 数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群)
数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群) 因为不会做目录所以请善用ctrl+F 本来想的是笔记之类的,写着写着就变成了资源整理 一些有的 ...
- 【LOJ#6485】LJJ 学二项式定理(单位根反演)
[LOJ#6485]LJJ 学二项式定理(单位根反演) 题面 LOJ 题解 显然对于\(a0,a1,a2,a3\)分开算答案. 这里以\(a0\)为例 \[\begin{aligned} Ans&am ...
- loj#6485. LJJ 学二项式定理(单位根反演)
题面 传送门 题解 首先你要知道一个叫做单位根反演的东西 \[{1\over k}\sum_{i=0}^{k-1}\omega^{in}_k=[k|n]\] 直接用等比数列求和就可以证明了 而且在模\ ...
随机推荐
- Disruptor分布式id生成策略
需要的pom文件: <!-- 顺序UUID --> <dependency> <groupId>com.fasterxml.uuid</groupId> ...
- 作业调度框架Quartz.NET-现学现用-01-快速入门
原文:作业调度框架Quartz.NET-现学现用-01-快速入门 前言 你需要应用执行一个任务吗?这个任务每天或每周星期二晚上11:30,或许仅仅每个月的最后一天执行.一个自动执行而无须干预的任务在执 ...
- 【洛谷 P5017】 摆渡车(斜率优化)
题目链接 算是巩固了一下斜率优化吧. 设\(f[i]\)表示前\(i\)分钟最少等待时间. 则有\(f[i]=\min_{j=0}^{i-m}f[j]+(cnt[i]-cnt[j])*i-(sum[i ...
- 单例模式的双重锁为什么要加volatile(转)
单例模式如下: 需要volatile关键字的原因是,在并发情况下,如果没有volatile关键字,在第5行会出现问题. instance = new TestInstance();可以分解为3行伪代码 ...
- CMake配置VTK时Qt5_DIR-NOTFOUND的解决方法
直接给解决方法了,不废话. Qt5的路径,请参考:C:\Program\IDE\Qt\Qt5.13.0\5.13.0\msvc2017_64\lib\cmake\Qt5 参考文章 CMake配置VTK ...
- PHP 结合 Boostrap 结合 js 实现学生列表删除编辑以及搜索功能(完结)
这个自己的小项目要先告一段落了.可能还有许多bug.请见谅 删除学生功能 PHP: // 这里是通过前端代码HTML中的 url 传过来的,用 $_GET 来获取(相关HTML代码可以看一下到主页看一 ...
- Mock测试框架(Mockito为例)
在做单元测试的时候,有的时候用到的一些类,我们构造起来不是那么容易,比如HttpRequest,或者说某个Service依赖到了某个Dao,想构造service还得先构造dao,这些外部对象构造起来比 ...
- pip 和pip3的区别
前言装完python3后发现库里面既有pip也有pip3,不知道它们的区别,因此特意去了解了一下. 解释先搜索了一下看到了如下的解释, 安装了python3之后,库里面既会有pip3也会有pip 1. ...
- systemd_journal_no_entries问题解决
问题: #journalctl Journal file /var/log/journal/410/system@0.journal~ uses an unsupported feature, ign ...
- C++ 谓词(predicate) 与 仿函数 ( functor (function object))
谓词与函数对象 谓词 predicate C++ 标准定义谓词如下: The Predicate parameter is used whenever an algorithm expects a f ...