box-cox解读
可以额外参考资料:https://blog.csdn.net/sinat_26917383/article/details/77864582,http://www.dataguru.cn/article-12380-1.html
由于线性回归是基于正态分布的前提假设,所以对其进行统计分析时,需经过数据的转换,使得数据符合正态分布。
Box 和 Cox在1964年提出的Box-Cox变换可使线性回归模型满足线性性、独立性、方差齐性以及正态性的同时,又不丢失信息。
Box-Cox变换是统计建模中常用的一种数据变换,用于连续的响应变量不满足正态分布的情况。在做线性回归的过程中,不可观测的误差可能是和预测变量相关,于是给线性回归的最小二乘法估计系数的结果带来误差,为了解决这样的方差齐性问题,所以考虑对相应因变量做Box-Cox变换,变换之后,可以一定程度上减小不可观测的误差和预测变量的相关性。但是选择的参数要适当,使用极大似然估计得到的参数,可以使上述过程的效果更好。当然,做过Box-Cox变换之后,方差齐性的问题不一定会消失,做过之后仍然需要做方差齐性的检验,看是否还需要采用其他方法。
1. 应用前提:
在做线性回归的过程中,一般线性模型假定; Y=Xβ + ε, 其中ε满足正态分布,但是利用实际数据建立回归模型时,个别变量的系数通不过。例如往往不可观测的误差 ε 可能是和预测变量相关的,不服从正态分布,于是给线性回归的最小二乘估计系数的结果带来误差,为了使模型满足线性性、独立性、方差齐性以及正态性,需改变数据形式,故应用box-cox转换。
2. 和其他处理方法的比较:
对于非正太数据的转换方法有:
在一些情况下(P值<0.003)上述方法很难实现正态化处理,所以优先使用Box-Cox转换,但是当P值>0.003时两种方法均可,优先考虑普通的平方变换。
Box-Cox推导公式见参考,这里可用sklearn、SAS等实现。
3. 结论
- 使用Box-Cox变换后的数据得到的回归模型优于变换前的模型,变换可以使模型的解释力度等性能更加优良。
- 变换后的残差可以更好的满足正态性、独立性等假设前提,降低了伪回归的概率。
- 使用Box-Cox变换族一般可以保证将数据进行成功的正态变化,但在二分变量或较少水平的等级变量的情况下,不能成功进行转换,此时可以考虑使用广义线性模型,例如logistic模型、johson转换等。
注:关于P值:
box-cox解读的更多相关文章
- SAS PROC MCMC example in R: Logistic Regression Random-Effects Model(转)
In this post I will run SAS example Logistic Regression Random-Effects Model in four R based solutio ...
- Kaggle比赛(二)House Prices: Advanced Regression Techniques
房价预测是我入门Kaggle的第二个比赛,参考学习了他人的一篇优秀教程:https://www.kaggle.com/serigne/stacked-regressions-top-4-on-lead ...
- stacking method house price in kaggle top10%
整合几部分代码的汇总 隐藏代码片段 导入python数据和可视化包 导入统计相关的工具 导入回归相关的算法 导入数据预处理相关的方法 导入模型调参相关的包 读取数据 特征工程 缺失值 类别特征处理-l ...
- 解读SSD中的Default box(Prior Box)
1:SSD更具体的框架如下: 2: Prior Box 缩进在SSD中引入了Prior Box,实际上与anchor非常类似,就是一些目标的预选框,后续通过softmax分类+bounding box ...
- 解析opencv中Box Filter的实现并提出进一步加速的方案(源码共享)。
说明:本文所有算法的涉及到的优化均指在PC上进行的,对于其他构架是否合适未知,请自行试验. Box Filter,最经典的一种领域操作,在无数的场合中都有着广泛的应用,作为一个很基础的函数,其性能的好 ...
- 时空上下文视觉跟踪(STC)算法的解读与代码复现(转)
时空上下文视觉跟踪(STC)算法的解读与代码复现 zouxy09@qq.com http://blog.csdn.net/zouxy09 本博文主要是关注一篇视觉跟踪的论文.这篇论文是Kaihua Z ...
- Object Detection · RCNN论文解读
转载请注明作者:梦里茶 Object Detection,顾名思义就是从图像中检测出目标对象,具体而言是找到对象的位置,常见的数据集是PASCAL VOC系列.2010年-2012年,Object D ...
- DCGAN 论文简单解读
DCGAN的全称是Deep Convolution Generative Adversarial Networks(深度卷积生成对抗网络).是2014年Ian J.Goodfellow 的那篇开创性的 ...
- CVPR2019 | Mask Scoring R-CNN 论文解读
Mask Scoring R-CNN CVPR2019 | Mask Scoring R-CNN 论文解读 作者 | 文永亮 研究方向 | 目标检测.GAN 推荐理由: 本文解读的是一篇发表于CVPR ...
- AAAI2019 | 基于区域分解集成的目标检测 论文解读
Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学 ...
随机推荐
- Docker入门笔记(Centos7)
centos7 wget https://mirrors.tuna.tsinghua.edu.cn/docker-ce/linux/centos/docker-ce.repo vim docker-c ...
- 深入js系列-类型(显式强制转换)
什么是显式 这里的显式和隐式是以普遍的标准来进行讨论的,你能看出来是怎么回事,那么它对你是"显式",相反你不知道的话,对你就是"隐式" 抽象操作 字符串.数字. ...
- Java调用api使用企业邮箱账户发送邮件
package cn.ucmed.otaka.healthcare.rubik.common; import lombok.extern.slf4j.Slf4j; import javax.mail. ...
- git 学习网站
GitBook :https://git-scm.com/book/zh/v2 Git 教程 廖雪峰 :https://www.liaoxuefeng.com/wiki/89604348802960 ...
- 1-7docke的网络模式
1.Bridge模式 bridge 模式是 docker 的默认⽹络模式,不写 –net 参数,就是 bridge 模式.比如使⽤ docker run - p 时 工作模式从网上找了一个,如下 例子 ...
- 【IntelliJ IDEA学习之九】版本控制之Git和Github
版本:IntelliJIDEA2018.1.4 [IntelliJ IDEA学习之九]版本控制之Git版本:IntelliJIDEA2018.1.4 一.git知识准备git是目前流行的分布式版本管理 ...
- eclipse&myeclipse 生成jar包后,spring无法扫描到bean定义
问题:eclipse&myeclipse 生成jar包后,spring无法扫描到bean定义 在使用getbean或者扫包时注入bean失败,但在IDE里是可以正常运行的? 原因:导出jar未 ...
- c# 大白话告诉你Thread的Sleep和Join的区别
我们的程序默认会有两个线程,一个是主线程,一个是负责垃圾回收的线程.如果代码不使用多线程,就只有主线程这一条干道.1.在主线程中调用Thread.Sleep(1000),表示主线程阻塞自己1秒.2.在 ...
- Python 3.X 练习集100题 05
用 *号输出字母 C的图案 方法1: print(" ***** ") print(" ** * ") print(" ** ") prin ...
- Atlassian JIRA 插件开发之二 安装和创建项目
安装参考 https://developer.atlassian.com/server/framework/atlassian-sdk/install-the-atlassian-sdk-on-a-w ...