box-cox解读
可以额外参考资料:https://blog.csdn.net/sinat_26917383/article/details/77864582,http://www.dataguru.cn/article-12380-1.html
由于线性回归是基于正态分布的前提假设,所以对其进行统计分析时,需经过数据的转换,使得数据符合正态分布。
Box 和 Cox在1964年提出的Box-Cox变换可使线性回归模型满足线性性、独立性、方差齐性以及正态性的同时,又不丢失信息。
Box-Cox变换是统计建模中常用的一种数据变换,用于连续的响应变量不满足正态分布的情况。在做线性回归的过程中,不可观测的误差可能是和预测变量相关,于是给线性回归的最小二乘法估计系数的结果带来误差,为了解决这样的方差齐性问题,所以考虑对相应因变量做Box-Cox变换,变换之后,可以一定程度上减小不可观测的误差和预测变量的相关性。但是选择的参数要适当,使用极大似然估计得到的参数,可以使上述过程的效果更好。当然,做过Box-Cox变换之后,方差齐性的问题不一定会消失,做过之后仍然需要做方差齐性的检验,看是否还需要采用其他方法。
1. 应用前提:
在做线性回归的过程中,一般线性模型假定; Y=Xβ + ε, 其中ε满足正态分布,但是利用实际数据建立回归模型时,个别变量的系数通不过。例如往往不可观测的误差 ε 可能是和预测变量相关的,不服从正态分布,于是给线性回归的最小二乘估计系数的结果带来误差,为了使模型满足线性性、独立性、方差齐性以及正态性,需改变数据形式,故应用box-cox转换。
2. 和其他处理方法的比较:
对于非正太数据的转换方法有:
在一些情况下(P值<0.003)上述方法很难实现正态化处理,所以优先使用Box-Cox转换,但是当P值>0.003时两种方法均可,优先考虑普通的平方变换。
Box-Cox推导公式见参考,这里可用sklearn、SAS等实现。
3. 结论
- 使用Box-Cox变换后的数据得到的回归模型优于变换前的模型,变换可以使模型的解释力度等性能更加优良。
- 变换后的残差可以更好的满足正态性、独立性等假设前提,降低了伪回归的概率。
- 使用Box-Cox变换族一般可以保证将数据进行成功的正态变化,但在二分变量或较少水平的等级变量的情况下,不能成功进行转换,此时可以考虑使用广义线性模型,例如logistic模型、johson转换等。
注:关于P值:
box-cox解读的更多相关文章
- SAS PROC MCMC example in R: Logistic Regression Random-Effects Model(转)
In this post I will run SAS example Logistic Regression Random-Effects Model in four R based solutio ...
- Kaggle比赛(二)House Prices: Advanced Regression Techniques
房价预测是我入门Kaggle的第二个比赛,参考学习了他人的一篇优秀教程:https://www.kaggle.com/serigne/stacked-regressions-top-4-on-lead ...
- stacking method house price in kaggle top10%
整合几部分代码的汇总 隐藏代码片段 导入python数据和可视化包 导入统计相关的工具 导入回归相关的算法 导入数据预处理相关的方法 导入模型调参相关的包 读取数据 特征工程 缺失值 类别特征处理-l ...
- 解读SSD中的Default box(Prior Box)
1:SSD更具体的框架如下: 2: Prior Box 缩进在SSD中引入了Prior Box,实际上与anchor非常类似,就是一些目标的预选框,后续通过softmax分类+bounding box ...
- 解析opencv中Box Filter的实现并提出进一步加速的方案(源码共享)。
说明:本文所有算法的涉及到的优化均指在PC上进行的,对于其他构架是否合适未知,请自行试验. Box Filter,最经典的一种领域操作,在无数的场合中都有着广泛的应用,作为一个很基础的函数,其性能的好 ...
- 时空上下文视觉跟踪(STC)算法的解读与代码复现(转)
时空上下文视觉跟踪(STC)算法的解读与代码复现 zouxy09@qq.com http://blog.csdn.net/zouxy09 本博文主要是关注一篇视觉跟踪的论文.这篇论文是Kaihua Z ...
- Object Detection · RCNN论文解读
转载请注明作者:梦里茶 Object Detection,顾名思义就是从图像中检测出目标对象,具体而言是找到对象的位置,常见的数据集是PASCAL VOC系列.2010年-2012年,Object D ...
- DCGAN 论文简单解读
DCGAN的全称是Deep Convolution Generative Adversarial Networks(深度卷积生成对抗网络).是2014年Ian J.Goodfellow 的那篇开创性的 ...
- CVPR2019 | Mask Scoring R-CNN 论文解读
Mask Scoring R-CNN CVPR2019 | Mask Scoring R-CNN 论文解读 作者 | 文永亮 研究方向 | 目标检测.GAN 推荐理由: 本文解读的是一篇发表于CVPR ...
- AAAI2019 | 基于区域分解集成的目标检测 论文解读
Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学 ...
随机推荐
- iptables 表和链的对应关系
filter表 主要用于对数据包进行过滤,根据具体的规则决定是否放行该数据包(如DROP.ACCEPT.REJECT.LOG).filter 表对应的内核模块为iptable_filter,包含三个规 ...
- [no_perms] Private mode enable, only admin can publish this module
在使用npm publish是出现了错误: npm ERR! code E403 npm ERR! 403 Forbidden - PUT https://registry.npm.taobao.or ...
- Salesforce Lightning开发学习(三)Component表单初解
初步了解了Lightning的组件开发流程后,我们来认识下lightning的表单 点击对象管理器,选择对象:电影(Movie__c),创建字段 标签 API 数据类型 票价 Number__c ...
- Qt QThread两种方式的使用:1-继承QThread重写run函数; 2- 继承QObject并moveToThread && 消息和槽在线程和依附线程间的传递
2019年08月18日起笔 方式一:继承QThread重写run函数 MyThread.h ----------------------------------- ... class MyThread ...
- git bash 乱码问题之解决方案
解决办法:右击左上方git标识,然后进入到如图中,点击Text,进行操作. 操作完毕后,关闭git bash,然后再重新打开,执行ls或ll命令,查看对应的以中文作为目录或文件名是否显示乱码,如果之前 ...
- 《HeadFirts设计模式》笔记
定义 在某种情境下,针对某些问题的某种解决方案. 设计模式 1.可拓展性强,方便维护,能够应付变化. 何时使用设计模式 设计之前,还有在重构的时候. OOP 可复用,可扩充,可维护 设计模式原则 1. ...
- CentOS安装Hive
1.环境和软件准备: hive版本:apache-hive-2.3.6-bin.tar.gz,下载地址:https://mirrors.tuna.tsinghua.edu.cn/apache/hive ...
- spark 读取 ftp
class FtpShow(spark: SparkSession, map: Map[String, String]) { private val path = map(FtpOptions.PAT ...
- Allowed memory size of 134217728 bytes exhausted问题解决方法
Allowed memory size of 134217728 bytes exhausted问题解决方法 php默认内存限制是128M,所以需要修改php.ini文件. 查找到memory_lim ...
- 实现简单的AOP前置后置增强
AOP操作是我们日常开发经常使用到的操作,例如都会用到的spring事务管理.今天我们通过一个demo实现对一个类的某一个方法进行前置和后置的增强. //被增强类 public class PetSt ...