【学习笔记】PYTHON数据分析与展示(北理工 嵩天)
0 数据分析之前奏
课程主要内容:常用IDE:本课程主要使用:Anaconda
Anaconda:一个集合,包括conda、某版本Python、一批第三方库等
-支持近800个第三方库
-适合科学计算领域
-包含多个主流工具
-开源免费
-跨平台
本身不是个ide 是将多个工具集成在一起的
conda
-一个工具,用于包管理和环境管理
-包管理与pip类似,管理Python第三方库
-环境管理能够允许用户使用不同版本的Python,并能灵活切换
conda将工具、第三方库、Python版本、conda都当作包,同等对待
conda有命令行工具
C:\Users\king\Anaconda3\Scripts\conda.exe –version 可以查看conda版本
conda update conda 升级conda
刚开始的是命令行,现在也集成为GUI,anaconda默认生成root的环境空间编程工具:spyder默认不舒服 改下
交互式编程环境:IPython
-是一个功能强大的交互式shell
-适合进行交互式数据可视化和GUI相关应用
IPython几个技巧
?:可以在变量或者函数前面加?获得通用信息
%run :可以执行.py程序 注意:%run在一个空的命名空间执行%
trouble shooting:
在ubuntu18中安装了anaconda3,启动spyder报错Segmentation fault (core dumped)
安装conda install pyopengl 然后再启动 卡住半天没了 出现killed报错 我日 然后升级了下anaconda3到最新才好了
1. 数据分析之表示
1.1 NumPy库入门
数据的维度
一维数据 列表、集合
二维数据 表格是经典的二维数据 用列表表示
多维数据 二维数据在更多维度上展开 比如时间维度 用列表表示
高维数据 仅使用最基本的二元关系展示复杂关系 key-value形式组织数据 用字典类型或者其他json、xmal、yaml等
NumPy的数组对象:ndarray
NumPy是一个开源的Python科学计算基础库
-一个强大的N维数组对象ndarray
-广播函数功能
-整合c/c++/fortran代码的工具
-线性代数、傅里叶变换、随机数生成等功能
NumPy是SciPy、Pandas等数据处理或科学计算库的基础
使用 import numpy as np
ndarray是一个多维数组,由两部分组成,要求数组元素类型相同,数组下标从0开始
-元数据(数据维度,数据类型等)
-实际数据
np.array() –ndarray别名是array
轴(axis):保存数据的维度
秩(rank):轴的数量例子:里面的int32不是Python基础类型,是NumPy定义的类型,更多类型如下:
为啥要这么多数据类型?
-科学计算涉及大量数据,对性能和存储都有较高要求
-对元素类型精细定义,有助于numpy合理使用存储空间并优化性能,有助于程序员对程序规模由合理评估
ndarray数组也可以由非同质对象构成
非同质ndarray元素为对象类型
非同质ndarray数组无法发挥numpy优势,尽量避免使用
ndarray数组的创建和变换
1) 从python列表元组等类型创建数组
x = np.array(list/tuple)
x = np.array(list/tuple,dtype=np.float32) 不指定类型的时候numpy自动关联一个合适的除了arange函数,其他都是浮点数ndarray数组的变换:维度变换、元素类型变换
ndarray数组向列表变换
ls = a.tolist()
ndarray数组的操作
索引和切片
ndarray一维数组的索引和列表一样
ndarray数组的运算
数组与标量的运算等于每个元素都和这个标量算一下
maximum等经过运算存在数据类型隐式转换
1.2 NumPy数据存取与函数
数据的csv文件存取
csv只能存储读取一维和二维数据,这是它的局限
多维数据的存取
对于ndarray数组 有个方法 a.tofile(frame,sep=’’,format=’%s’)
-frame 文件、字符串 sep:数据分隔符,如果是空串,写入文件为二进制 format:写入数据的格式
可以保存为二进制,小些,但是无法人类读懂,如果知道是这样写的,可以还原,作为一种保存数据的方法
如何还原呢,np.fromfile(frame,dtype=float,count=-1,sep=’’)
-dtype:读取的数据类型 count:读入元素的个数-1表示全部
使用这个方法需要知道存入文件时候的数组维度和元素类型,就是元数据,所以fromfile和tofile需要配合使用,可以将元数据另外存储解决
NumPy的便捷文件存取
np.save(fname,array)或者np.savez(fname,array)
-fname:文件名以.npy或者.npz
np.load(fname)
NumPy的随机数函数
NumPy的random子库 np.random.*NumPy的统计函数
NumPy的梯度函数
1.3 实例1:图像的手绘效果
图像的数组表示
RGB色彩表示
PIL库 处理图像的第三方库 pip install pillow from PIL import Image
Image是PIL库中代表图像的类(对象)
图像是一个由像素组成的二维矩阵,每个元素是一个RGB值图像的变换
图像的手绘实例
手绘特征:黑白灰色、边界线条较重、相同或者相近色彩趋于白色、略有光源效果
from PIL import Image
import numpy as np a = np.asarray(Image.open('./beijing.jpg').convert('L')).astype('float') depth = 10. # (0-100)
grad = np.gradient(a) #取图像灰度的梯度值
grad_x, grad_y = grad #分别取横纵图像梯度值
grad_x = grad_x*depth/100.
grad_y = grad_y*depth/100.
A = np.sqrt(grad_x**2 + grad_y**2 + 1.)
uni_x = grad_x/A
uni_y = grad_y/A
uni_z = 1./A vec_el = np.pi/2.2 # 光源的俯视角度,弧度值
vec_az = np.pi/4. # 光源的方位角度,弧度值
dx = np.cos(vec_el)*np.cos(vec_az) #光源对x 轴的影响
dy = np.cos(vec_el)*np.sin(vec_az) #光源对y 轴的影响
dz = np.sin(vec_el) #光源对z 轴的影响 b = 255*(dx*uni_x + dy*uni_y + dz*uni_z) #光源归一化
b = b.clip(0,255) im = Image.fromarray(b.astype('uint8')) #重构图像
im.save('./beijingHD.jpg')
2. 数据分析与展示
2.1 Matplotlib库入门
由各种数据可视化类组成,内部结构复杂,是受matlab启发
matplotlib.pyplot是绘制各类可视化图形的命令子库,相当于快捷方式
import matplotlib.pyplot as plt
plt.savefig(‘test’,dpi=600) #保存为png文件
绘制多个图形,分区域plt.subplot(3,2,4)
pylot的plot函数
plt.plot(x,y,format_string,**kwargs)
-format_string 表示曲线的格式字符串 **kwargs表示第二组或更多(x,y,format_string) 当绘制多条曲线x不能省略,当绘制一条时候可以省略x用索引值format_string由颜色字符、风格字符、标记字符组成
pyplot的中文显示
方法1:修改绘制区域的全部字体方法2:pylot的文本显示首先字符串前边的r代表是原始字符串,也就是里边的内容不需要转移,这个一般在正则表达式的时候也这么用,而这里是laText的用法,在python中使用laText,需要在文本的前后加上$符号,也就是你所用的那样,然后就是laText的文本了,当你输入了以上内容,matplotlib会自动为你解析的,\pi代表的就是π
pylot子绘图区域这种方法每次都要写(3,3),用另外一种方法GridSpec类
2.2 Matplotlib基础绘图函数示例(5个实例)
pylot饼图绘制pylot直方图绘制pylot极坐标绘制pyplot散点图绘制面向对象的绘制方法是matplotlib库的推荐方法,pillow库的函数变为对象的方法
2.3 实例2:引力波的绘制
http://python123.io/dv/grawave.html 引力波数据源
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import wavfile rate_h, hstrain= wavfile.read(r"H1_Strain.wav","rb")
rate_l, lstrain= wavfile.read(r"L1_Strain.wav","rb")
#reftime, ref_H1 = np.genfromtxt('GW150914_4_NR_waveform_template.txt').transpose()
reftime, ref_H1 = np.genfromtxt('wf_template.txt').transpose() #使用python123.io下载文件 htime_interval = 1/rate_h
ltime_interval = 1/rate_l
fig = plt.figure(figsize=(12, 6)) # 丢失信号起始点
htime_len = hstrain.shape[0]/rate_h
htime = np.arange(-htime_len/2, htime_len/2 , htime_interval)
plth = fig.add_subplot(221)
plth.plot(htime, hstrain, 'y')
plth.set_xlabel('Time (seconds)')
plth.set_ylabel('H1 Strain')
plth.set_title('H1 Strain') ltime_len = lstrain.shape[0]/rate_l
ltime = np.arange(-ltime_len/2, ltime_len/2 , ltime_interval)
pltl = fig.add_subplot(222)
pltl.plot(ltime, lstrain, 'g')
pltl.set_xlabel('Time (seconds)')
pltl.set_ylabel('L1 Strain')
pltl.set_title('L1 Strain') pltref = fig.add_subplot(212)
pltref.plot(reftime, ref_H1)
pltref.set_xlabel('Time (seconds)')
pltref.set_ylabel('Template Strain')
pltref.set_title('Template')
fig.tight_layout() plt.savefig("Gravitational_Waves_Original.png")
plt.show()
plt.close(fig)
结果
3. 数据分析之概要
3.1 Pandas库入门
Pandas提供高性能易用数据类型和分析工具
import pandas as pdPandas库的Series类型 –一维也支持自定义索引
b.index b.values 获得索引和数据 类似ndarray和字典
两套索引并存 但是不能混用Series类型也与字典类型类似 可以in, get()
Pandas库的DataFrame类型 –二维
由共用相同索引的一组列组成,实际上就是一个表格
是一个表格型的数据类型,每列值类型可以不同
既有行索引也有列索引
常用于表达二维数据,单可以表达多维数据
DataFrame基本操作类似Series,根据行列索引
Pandas库的数据数据类型操作
如何改变结构呢 增加 或重排:重新索引 删除:drop索引是不可修改类型 索引的操作就是对数据的操作 numpy不存在索引 必须通过维度来操作
Series只有0轴 DataFrame由0轴 1轴,drop默认操作0轴
Pandas库的数据类型运算
算术类型运算比较运算数据和索引建立关联关系 达到操作索引就是操作数据
3.2 Pandas数据特征分析
数据的排序
可以对索引排序
也可以对数据排序基本的统计分析函数累计统计分析滚动计算(窗口计算)数据的相关分析
【学习笔记】PYTHON数据分析与展示(北理工 嵩天)的更多相关文章
- MongoDB学习笔记:Python 操作MongoDB
MongoDB学习笔记:Python 操作MongoDB Pymongo 安装 安装pymongopip install pymongoPyMongo是驱动程序,使python程序能够使用Mong ...
- 【学习笔记】PYTHON语言程序设计(北理工 嵩天)
1 Python基本语法元素 1.1 程序设计基本方法 计算机发展历史上最重要的预测法则 摩尔定律:单位面积集成电路上可容纳晶体管数量约2年翻倍 cpu/gpu.内存.硬盘.电子产品价格等都遵 ...
- Python数据分析与展示(1)-数据分析之表示(1)-NumPy库入门
Numpy库入门 从一个数据到一组数据 维度:一组数据的组织形式 一维数据:由对等关系的有序或无序数据构成,采用线性方式组织. 可用类型:对应列表.数组和集合 不同点: 列表:数据类型可以不同 数组: ...
- Python学习笔记—Python基础1 介绍、发展史、安装、基本语法
第一周学习笔记: 一.Python介绍 1.Python的创始人为吉多·范罗苏姆.1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序,作为ABC语言 ...
- Python学习笔记--Python字符串连接方法总结
声明: 这些总结的学习笔记,一部分是自己在工作学习中总结,一部分是收集网络中的知识点总结而成的,但不到原文链接.如果有侵权,请知会,多谢. python中有很多字符串连接方式,总结一下: 1)最原始的 ...
- 学习笔记——python(继承)
学习笔记(Python继承) 有几种叫法(父类-子类.基类-派生类)先拿代码演示一下: class father: def work(self): print("work>>&g ...
- 集智人工智能学习笔记Python#0
1,学习基本Python语句规范: print('Hello world') print() 为函数 ‘Hello world’为字符串 2,表达式和语句的区别: 表达式有结果,运算就是表达式的一种: ...
- Python数据分析与展示第0&1周学习笔记(北理工 嵩天)
一前奏 1..Python语言开发工具选择 IDLE:自带默认常用入门级 PyCharm:简单.集成度高 Anaconda:awesome IDE较为简单,不做详细记录. 二.表示 1.numpy库入 ...
- Python数据分析与展示第2周学习笔记(北理工 嵩天)
单元4:Matplotlib库入门 matplotlib.pyplot是绘制各类可视化图形的命令子库,相当于快捷方式 import matplotlib.pyplot as plt # -*- cod ...
随机推荐
- 遵循PEP8风格
遵循PEP8风格 在编写python代码的时候我们应该采用统一的风格来编写代码,可以使代码更加容易读懂.采用和其他程序员统一的编码风格来写代码,也可以使项目更利于多人协作开发.即便代码只有你自己能看懂 ...
- [LeetCode] 130. Surrounded Regions 包围区域
Given a 2D board containing 'X' and 'O'(the letter O), capture all regions surrounded by 'X'. A regi ...
- 端口转发之 lcx
lcx.exe是一个端口转发工具,有Windows版和Linux版两个版本,Windows版是lcx.exe,Linux版为portmap Windows版使用方法如下: lcx有两大功能: )端口转 ...
- AtCoder Grand Contest 035 简要题解
从这里开始 题目目录 Problem A XOR Circle 你发现,权值的循环节为 $a_0, a_1, a_0\oplus a_1$,然后暴力即可. Code #include <bits ...
- Golang(八)go modules 学习
0. 前言 最近加入鹅厂学习 k8s,组内使用 Go 1.11 以上的 go modules 管理依赖,因此整理了相关资料 本文严重参考原文:初窥Go module 1. 传统 Golang 包依赖管 ...
- vue组件component没效果
如果实在不知道问题所在,你就看看你的component的命名是不是驼峰命名
- Qt Quick 组件与动态对象
博客24## 一.Components(组件) Component 是由 Qt 框架或开发者封装好的.只暴露了必要接口的 QML 类型,可以重复利用.一个 QML 组件就像一个黑盒子,它通过属性.信号 ...
- luogu p2705 小球
题目部分 题目描述 有 R 个红色盒子和 B 个蓝色盒子,还有 R 个红色小球和 B 个蓝色小球.每个盒子只能装一个小球,每个小球都要放在一个盒子里. 如果把一个红色小球放在一个红色盒子里,那么得分是 ...
- mysql中的回表查询与索引覆盖
了解一下MySQL中的回表查询与索引覆盖. 回表查询 要说回表查询,先要从InnoDB的索引实现说起.InnoDB有两大类索引,一类是聚集索引(Clustered Index),一类是普通索引(Sec ...
- Git系列四之在本地服务器搭建gitlab仓库管理(centeros环境下)
1.Git仓库管理 现在本地已经创建了git仓库,又在gitlab上创建了一个git仓库,并且让这两个仓库进行远程同步,这样gitlab仓库既可以备份也可以与他人协作管理远程仓库以及根据需要推送或拉取 ...