UUID算法系列各自有何优缺点( UUID1--UUID5)
UUID具有以下涵义:
经由一定的算法机器生成
为了保证UUID的唯一性,规范定义了包括网卡MAC地址、时间戳、名字空间(Namespace)、随机或伪随机数、时序等元素,以及从这些元素生成UUID的算法。UUID的复杂特性在保证了其唯一性的同时,意味着只能由计算机生成。
非人工指定,非人工识别
UUID是不能人工指定的,除非你冒着UUID重复的风险。UUID的复杂性决定了“一般人“不能直接从一个UUID知道哪个对象和它关联。
在特定的范围内重复的可能性极小
UUID的生成规范定义的算法主要目的就是要保证其唯一性。但这个唯一性是有限的,只在特定的范围内才能得到保证,这和UUID的类型有关(参见UUID的版本)。
UUID的版本
UUID具有多个版本,每个版本的算法不同,应用范围也不同。
首先是一个特例--Nil UUID--通常我们不会用到它,它是由全为0的数字组成,如下:
00000000-0000-0000-0000-000000000000
UUID Version 1:基于时间的UUID
基于时间的UUID通过计算当前时间戳、随机数和机器MAC地址得到。由于在算法中使用了MAC地址,这个版本的UUID可以保证在全球范围的唯一性。但与此同时,使用MAC地址会带来安全性问题,这就是这个版本UUID受到批评的地方。如果应用只是在局域网中使用,也可以使用退化的算法,以IP地址来代替MAC地址--Java的UUID往往是这样实现的(当然也考虑了获取MAC的难度)。
UUID Version 2:DCE安全的UUID
DCE(Distributed Computing Environment)安全的UUID和基于时间的UUID算法相同,但会把时间戳的前4位置换为POSIX的UID或GID。这个版本的UUID在实际中较少用到。
UUID Version 3:基于名字的UUID(MD5)
基于名字的UUID通过计算名字和名字空间的MD5散列值得到。这个版本的UUID保证了:相同名字空间中不同名字生成的UUID的唯一性;不同名字空间中的UUID的唯一性;相同名字空间中相同名字的UUID重复生成是相同的。
UUID Version 4:随机UUID
根据随机数,或者伪随机数生成UUID。这种UUID产生重复的概率是可以计算出来的,但随机的东西就像是买彩票:你指望它发财是不可能的,但狗屎运通常会在不经意中到来。
UUID Version 5:基于名字的UUID(SHA1)
和版本3的UUID算法类似,只是散列值计算使用SHA1(Secure Hash Algorithm 1)算法。
UUID的应用
从UUID的不同版本可以看出,
Version 1/2适合应用于分布式计算环境下,具有高度的唯一性;
Version 3/5适合于一定范围内名字唯一,且需要或可能会重复生成UUID的环境下;
至于Version 4,个人的建议是最好不用(虽然它是最简单最方便的)。
通常我们建议使用UUID来标识对象或持久化数据,但以下情况最好不使用UUID:
映射类型的对象。比如只有代码及名称的代码表。
人工维护的非系统生成对象。比如系统中的部分基础数据。
对于具有名称不可重复的自然特性的对象,最好使用Version 3/5的UUID。比如系统中的用户。如果用户的UUID是Version 1的,如果你不小心删除了再重建用户,你会发现人还是那个人,用户已经不是那个用户了。(虽然标记为删除状态也是一种解决方案,但会带来实现上的复杂性。)
UUID算法系列各自有何优缺点( UUID1--UUID5)的更多相关文章
- Atitit s2018.6 s6 doc list on com pc.docx Atitit s2018.6 s6 doc list on com pc.docx Aitit algo fix 算法系列补充.docx Atiitt 兼容性提示的艺术 attilax总结.docx Atitit 应用程序容器化总结 v2 s66.docx Atitit file cms api
Atitit s2018.6 s6 doc list on com pc.docx Atitit s2018.6 s6 doc list on com pc.docx Aitit algo fi ...
- JAVA算法系列 冒泡排序
java算法系列之排序 手写冒泡 冒泡算是最基础的一个排序算法,简单的可以理解为,每一趟都拿i与i+1进行比较,两个for循环,时间复杂度为 O(n^2),同时本例与选择排序进行了比较,选择排序又叫直 ...
- JAVA算法系列 快速排序
java算法系列之排序 手写快排 首先说一下什么是快排,比冒泡效率要高,快排的基本思路是首先找到一个基准元素,比如数组中最左边的那个位置,作为基准元素key,之后在最左边和最右边设立两个哨兵,i 和 ...
- javascript实现数据结构与算法系列:栈 -- 顺序存储表示和链式表示及示例
栈(Stack)是限定仅在表尾进行插入或删除操作的线性表.表尾为栈顶(top),表头为栈底(bottom),不含元素的空表为空栈. 栈又称为后进先出(last in first out)的线性表. 堆 ...
- 三白话经典算法系列 Shell排序实现
山是包插入的精髓排序排序,这种方法,也被称为窄增量排序.因为DL.Shell至1959提出命名. 该方法的基本思想是:先将整个待排元素序列切割成若干个子序列(由相隔某个"增量"的元 ...
- 【C#实现漫画算法系列】-判断 2 的乘方
微信上关注了算法爱好者这个公众号,有一个漫画算法系列的文章生动形象,感觉特别好,给大家推荐一下(没收过广告费哦),原文链接:漫画算法系列.也看到了许多同学用不同的语言来实现算法,作为一枚C#资深爱好的 ...
- 玩转算法系列--图论精讲 面试升职必备(Java版)
第1章 和bobo老师一起,玩转图论算法欢迎大家来到我的新课程:<玩转图论算法>.在这个课程中,我们将一起完整学习图论领域的经典算法,培养大家的图论建模能力.通过这个课程的学习,你将能够真 ...
- 数据结构与算法系列——排序(4)_Shell希尔排序
1. 工作原理(定义) 希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本.但希尔排序是非稳定排序算法. 希尔排序的基本思想是:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入 ...
- 编程作业1.1——sklearn机器学习算法系列之LinearRegression线性回归
知识点 scikit-learn 对于线性回归提供了比较多的类库,这些类库都可以用来做线性回归分析. 我们也可以使用scikit-learn的线性回归函数,而不是从头开始实现这些算法. 我们将scik ...
随机推荐
- 【云栖社区001-数据结构】如何实现一个高效的单向链表逆序输出(Java版)
如题 动手之前,发现自己很擅长用C语言来写链表. 不过,既然自己做的是Java开发,那么还是用Java实现这个算法吧:毕竟,以后的若干年里都差不多要跟Java打交道了. 于是,先将Java版的链表自学 ...
- 动态创建自绘的CListBox注意事项
Create(WS_VISIBLE|WS_CHILD|LBS_NOTIFY|LBS_OWNERDRAWFIXED|LBS_HASSTRINGS|LBS_NOINTEGRALHEIGHT ,rcWnd, ...
- c#2.0锐利体验《泛型编程》读书笔记
1.c#泛型及机制 Class Stack<T> { } T 其实为type的缩小,不过也可为其他字符代替T ,被称为“泛型类型” T为晚绑定的,在编译的时候还不能确定T的确切类型. 2 ...
- Spark数据倾斜解决方案(转)
本文转发自技术世界,原文链接 http://www.jasongj.com/spark/skew/ Spark性能优化之道——解决Spark数据倾斜(Data Skew)的N种姿势 发表于 2017 ...
- Dynamics CRM 数据数量限制更改
1.在CRM2016中如果想要导出超过10000记录数据,更新 MaxRecordsForExportToExcel 这个字段的值. SELECT MaxRecordsForExportToExce ...
- C# 反射(转)
什么是反射 Reflection,中文翻译为反射. 这是.Net中获取运行时类型信息的方式,.Net的应用程序由几个部分:‘程序集(Assembly)’.‘模块(Module)’.‘类型 ...
- page内置对象
- python - 手机号正则匹配
Python 手机号正则匹配 # -*- coding:utf-8 -*- import re def is_phone(phone): phone_pat = re.compile('^(13\d| ...
- create系列创建节点的方法
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- hibernate之多对多关系
hibernate的多对多hibernate可以直接映射多对多关联关系(看作两个一对多) 下面我们拿三张表来做实例 t_book_hb t_book_category_hb(桥接表) t_catego ...