环境
  apache-flume-1.6.0

一、多agent连接

1、node101配置 option2

    # Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1 # Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = node101
a1.sources.r1.port = # Describe the sink
# a1.sinks.k1.type = logger
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = node102
a1.sinks.k1.port = # Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity =
a1.channels.c1.transactionCapacity = # Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

2、node102配置 option1

############################################################
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1 # Describe/configure the source
a1.sources.r1.type = avro
a1.sources.r1.bind = node102
a1.sources.r1.port = # Describe the sink
a1.sinks.k1.type = logger # Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity =
a1.channels.c1.transactionCapacity = # Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
############################################################

3、启动顺序
先启动node102-flume,后启动node101-flume,看一下flume启动顺序就知道,要先创建sink,然后创建channel,最后创建source;然后channel连接sink和channel;最后启动channel、sink、source

[root@node102 conf]# flume-ng agent -c /usr/local/apache-flume-1.6.-bin/conf -f /usr/local/apache-flume-1.6.-bin/conf/option1 -n a1 -Dflume.root.logger=INFO,console
[root@node101 conf]# flume-ng agent -c /usr/local/apache-flume-1.6.-bin/conf -f /usr/local/apache-flume-1.6.-bin/conf/option2 -n a1 -Dflume.root.logger=INFO,console

4、测试:在node101 telnet测试,在node102查看输出日志
node101 telnet:

[root@node101 ~]# telnet node101
Trying 192.168.118.101...
Connected to node101.
Escape character is '^]'.
hello world
OK
haha wjy
OK
hi xiaoming
OK
^]
telnet> quit
Connection closed.
[root@node101 ~]#

node102 flume日志:

-- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:)] Event: { headers:{} body:   6C 6C 6F   6F  6C  0D hello world. }
-- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:)] Event: { headers:{} body: 6A 0D haha wjy. }
-- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:)] Event: { headers:{} body: 6F 6D 6E 0D hi xiaoming. }

二、Exec Source
Source类型选择Exec
1、配置 option3

############################################################
a1.sources = r1
a1.sinks = k1
a1.channels = c1 # Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /home/flume.exec.log # Describe the sink
a1.sinks.k1.type = logger # Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity =
a1.channels.c1.transactionCapacity = # Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
############################################################

2、启动

[root@node101 conf]# flume-ng agent -c /usr/local/apache-flume-1.6.-bin/conf -f /usr/local/apache-flume-1.6.-bin/conf/option3 -n a1 -Dflume.root.logger=INFO,console

3、测试

[root@node101 home]# echo "wjy" >> flume.exec.log
[root@node101 home]# echo "hi" >> flume.exec.log
[root@node101 home]# echo "hello wjy" >> flume.exec.log

flume输出:

-- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:)] Event: { headers:{} body:  6A  wjy }
-- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:)] Event: { headers:{} body: hi }
-- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:)] Event: { headers:{} body: 6C 6C 6F 6A hello wjy }

三、Spooling Directory Source

监测配置的目录下新增的文件,并将文件中的数据读取出来:
1)拷贝到spool目录下的文件不可以再打开编辑;
2) spool目录下不可包含相应的子目录;

1、配置

    ############################################################
a1.sources = r1
a1.sinks = k1
a1.channels = c1 # Describe/configure the source
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /home/logs
a1.sources.r1.fileHeader = true # Describe the sink
a1.sinks.k1.type = logger # Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity =
a1.channels.c1.transactionCapacity = # Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
############################################################

2、启动

[root@node101 conf]# flume-ng agent -c /usr/local/apache-flume-1.6.-bin/conf -f /usr/local/apache-flume-1.6.-bin/conf/option4 -n a1 -Dflume.root.logger=INFO,console

3、测试

日志目录:/home/logs

[root@node101 home]# cat flume.exec.log
hello
hello
hello
wjy
hi
hello wjy
[root@node101 home]# mkdir logs && mv flume.exec.log ./logs && cd logs && ls
flume.exec.log.COMPLETED

flume输出:

-- ::, (pool--thread-) [INFO - org.apache.flume.client.avro.ReliableSpoolingFileEventReader.rollCurrentFile(ReliableSpoolingFileEventReader.java:)] Preparing to move file /home/logs/flume.exec.log to /home/logs/flume.exec.log.COMPLETED
-- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:)] Event: { headers:{file=/home/logs/flume.exec.log} body: 6C 6C 6F hello }
-- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:)] Event: { headers:{file=/home/logs/flume.exec.log} body: 6C 6C 6F hello }
-- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:)] Event: { headers:{file=/home/logs/flume.exec.log} body: 6C 6C 6F hello }
-- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:)] Event: { headers:{file=/home/logs/flume.exec.log} body: 6A wjy }
-- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:)] Event: { headers:{file=/home/logs/flume.exec.log} body: hi }
-- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:)] Event: { headers:{file=/home/logs/flume.exec.log} body: 6C 6C 6F 6A hello wjy }

四、日志输出到HDFS

1、配置

############################################################
a1.sources = r1
a1.sinks = k1
a1.channels = c1 # Describe/configure the source
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /home/logs
a1.sources.r1.fileHeader = true # Describe the sink
***只修改上一个spool sink的配置代码块 a1.sinks.k1.type = logger
a1.sinks.k1.type=hdfs
a1.sinks.k1.hdfs.path=hdfs://node101:8020/flume/%Y-%m-%d/%H%M ##每隔60s或者文件大小超过10M的时候产生新文件
# hdfs有多少条消息时新建文件,0不基于消息个数
a1.sinks.k1.hdfs.rollCount=
# hdfs创建多长时间新建文件,0不基于时间
a1.sinks.k1.hdfs.rollInterval=
# hdfs多大时新建文件,0不基于文件大小
a1.sinks.k1.hdfs.rollSize=
# 当目前被打开的临时文件在该参数指定的时间(秒)内,没有任何数据写入,则将该临时文件关闭并重命名成目标文件
a1.sinks.k1.hdfs.idleTimeout= a1.sinks.k1.hdfs.fileType=DataStream
a1.sinks.k1.hdfs.useLocalTimeStamp=true ## 每五分钟生成一个目录:
# 是否启用时间上的”舍弃”,这里的”舍弃”,类似于”四舍五入”,后面再介绍。如果启用,则会影响除了%t的其他所有时间表达式
a1.sinks.k1.hdfs.round=true
# 时间上进行“舍弃”的值;
a1.sinks.k1.hdfs.roundValue=
# 时间上进行”舍弃”的单位,包含:second,minute,hour
a1.sinks.k1.hdfs.roundUnit=minute # Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity =
a1.channels.c1.transactionCapacity = # Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
############################################################

创建HDFS目录

[root@node101 conf]# hdfs dfs -mkdir /flume

2、启动

[root@node101 conf]# flume-ng agent -c /usr/local/apache-flume-1.6.-bin/conf -f /usr/local/apache-flume-1.6.-bin/conf/option5 -n a1 -Dflume.root.logger=INFO,console

3、测试

制造测试数据:

[root@node101 home]# echo "hello wjy" >> test.log
[root@node101 home]# echo "hello xiaoming" >> test.log
[root@node101 home]# echo "hi xiaowang" >> test.log
[root@node101 home]# cp test.log ./logs

flume执行日志:

-- ::, (pool--thread-) [INFO - org.apache.flume.client.avro.ReliableSpoolingFileEventReader.readEvents(ReliableSpoolingFileEventReader.java:)] Last read took us just up to a file boundary. Rolling to the next file, if there is one.
-- ::, (pool--thread-) [INFO - org.apache.flume.client.avro.ReliableSpoolingFileEventReader.rollCurrentFile(ReliableSpoolingFileEventReader.java:)] Preparing to move file /home/logs/test.log to /home/logs/test.log.COMPLETED
-- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.HDFSDataStream.configure(HDFSDataStream.java:)] Serializer = TEXT, UseRawLocalFileSystem = false
-- ::, (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.open(BucketWriter.java:)] Creating hdfs://node101:8020/flume/2019-07-01/1845/FlumeData.1561978100198.tmp
-- ::, (hdfs-k1-roll-timer-) [INFO - org.apache.flume.sink.hdfs.BucketWriter$.call(BucketWriter.java:)] Closing idle bucketWriter hdfs://node101:8020/flume/2019-07-01/1845/FlumeData.1561978100198.tmp at 1561978108285
-- ::, (hdfs-k1-roll-timer-) [INFO - org.apache.flume.sink.hdfs.BucketWriter.close(BucketWriter.java:)] Closing hdfs://node101:8020/flume/2019-07-01/1845/FlumeData.1561978100198.tmp
-- ::, (hdfs-k1-call-runner-) [INFO - org.apache.flume.sink.hdfs.BucketWriter$.call(BucketWriter.java:)] Renaming hdfs://node101:8020/flume/2019-07-01/1845/FlumeData.1561978100198.tmp to hdfs://node101:8020/flume/2019-07-01/1845/FlumeData.1561978100198
-- ::, (hdfs-k1-roll-timer-) [INFO - org.apache.flume.sink.hdfs.HDFSEventSink$.run(HDFSEventSink.java:)] Writer callback called.

hdfs文件:

五、其他:
多路日志合并

多路日志输出

Apache Flume使用手册

Flume概念与原理

Flume(一)Flume原理解析

Flume构建日志采集系统

【Flume学习之二】Flume 使用场景的更多相关文章

  1. 【Flume学习之一】Flume简介

    环境 apache-flume-1.6.0 Flume是分布式日志收集系统.可以将应用产生的数据存储到任何集中存储器中,比如HDFS,HBase:同类工具:Facebook Scribe,Apache ...

  2. Flume 学习笔记之 Flume NG概述及单节点安装

    Flume NG概述: Flume NG是一个分布式,高可用,可靠的系统,它能将不同的海量数据收集,移动并存储到一个数据存储系统中.轻量,配置简单,适用于各种日志收集,并支持 Failover和负载均 ...

  3. Flume 学习笔记之 Flume NG+Kafka整合

    Flume NG集群+Kafka集群整合: 修改Flume配置文件(flume-kafka-server.conf),让Sink连上Kafka hadoop1: #set Agent name a1. ...

  4. Flume 学习笔记之 Flume NG高可用集群搭建

    Flume NG高可用集群搭建: 架构总图: 架构分配: 角色 Host 端口 agent1 hadoop3 52020 collector1 hadoop1 52020 collector2 had ...

  5. 分布式实时日志系统(二) 环境搭建之 flume 集群搭建/flume ng资料

    最近公司业务数据量越来越大,以前的基于消息队列的日志系统越来越难以满足目前的业务量,表现为消息积压,日志延迟,日志存储日期过短,所以,我们开始着手要重新设计这块,业界已经有了比较成熟的流程,即基于流式 ...

  6. Flume学习之路 (一)Flume的基础介绍

    一.背景 Hadoop业务的整体开发流程: 从Hadoop的业务开发流程图中可以看出,在大数据的业务处理过程中,对于数据的采集是十分重要的一步,也是不可避免的一步. 许多公司的平台每天会产生大量的日志 ...

  7. Flume学习总结

    Flume学习总结 flume是一个用来采集数据的软件,它可以从数据源采集数据到一个集中存放的地方. 最常用flume的数据采集场景是对日志的采集,不过,lume也可以用来采集其他的各种各样的数据,因 ...

  8. flume学习以及ganglia(若是要监控hive日志,hive存放在/tmp/hadoop/hive.log里,只要运行过hive就会有)

    python3.6hdfs的使用 https://blog.csdn.net/qq_29863961/article/details/80291654 https://pypi.org/  官网直接搜 ...

  9. flume学习安装

    近期项目组有需求点击流日志须要自己收集,学习了一下flume而且成功安装了.相关信息记录一下. 1)下载flume1.5版本号  wget http://www.apache.org/dyn/clos ...

随机推荐

  1. Echo团队Alpha冲刺 - 总结随笔

    班级:软件工程1916|W 作业:项目Alpha冲刺(团队) 团队名称:Echo 作业目标:完成项目Alpha冲刺 评审表:腾讯文档 Alpha冲刺随笔集合 目录 团队博客汇总 项目预期计划及完成情况 ...

  2. test20190901 NOI2019 模拟赛

    0+0+0=0.还是太菜,看不出题型. Masodik 你要从 (0,0) 点走到 (n,m),每次只能往 x 轴或者 y 轴正方向移动一个单位距离.从 (i,j) 移动到 (i,j+1) 的代价为 ...

  3. 让一个项目同时提交到码云和GitHub两个仓库

    在项目目录里找到.git文件夹然后找到config文件. 打开这个文件后找到下面的代码 [remote "origin"] url = git提交地址 fetch = +refs/ ...

  4. Django 实现文件下载

    1. 思路: 文件,让用户下载 - a标签+静态文件 - 设置响应头(django如何实现文件下载) 2. a标签实现 <a href="/static/xxx.xlsx"& ...

  5. webuploader解决大文件断点续传

    文件夹数据库处理逻辑 public class DbFolder { JSONObject root; public DbFolder() { this.root = new JSONObject() ...

  6. vue+elementUI完成注册及登陆

    1. vue怎么引入和配置使用element-ui框架 1.1 使用vue-cli脚手架工具创建一个vue项目 vue init webpack pro01 1.2 npm安装elementUI cd ...

  7. Log4net 控制台打印日志(二)

    1.创建控制台程序 2.用NuGet添加log4net引用 3.添加应用程序配置文件:App.config 4.添加配置信息: <?xml version="1.0" enc ...

  8. python 报can't subtract offset-naive and offset-aware datetimes错误

    两个时间一个含时区,一个不含时区

  9. 数据分析师(Data Analyst),数据工程师(Data Engineer),数据科学家(Data Scientist)的区别

    数据分析师(Data Analyst):负责从数据中提取出有用的信息,以帮助公司形成业务决策.工作内容包括:对数据进行提取,清洗,分析(用描述统计量,趋势分析,多维度分析,假设检验等统计常用方法对数据 ...

  10. Python配置环境变量

    Python安装完成之后,运行cmd(win+R): 在控制台中输入Python,若安装完成,会在控制台中打开Python:   如果Python未添加至环境变量,则会提示"python不是 ...