Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).


The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.

Example:

Given matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
] sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12 

Note:

  1. You may assume that the matrix does not change.
  2. There are many calls to sumRegion function.
  3. You may assume that row1 ≤ row2 and col1 ≤ col2.

303. Range Sum Query - Immutable 的变形,这题是2D数组,给左上角和右下角的点,这两点的行和列组成了一个矩形,求这个矩形里所有数字的和。

解法:DP, 建立一个二维数组dp,其中dp[i][j]表示累计区间(0, 0)到(i, j)这个矩形区间所有数字的和,求(r1, c1)到(r2, c2)的矩形区间和时,只需dp[r2][c2] - dp[r2][c1 - 1] - dp[r1 - 1][c2] + dp[r1 - 1][c1 - 1]即可。

Java:

private int[][] dp;

public NumMatrix(int[][] matrix) {
if( matrix == null
|| matrix.length == 0
|| matrix[0].length == 0 ){
return;
} int m = matrix.length;
int n = matrix[0].length; dp = new int[m + 1][n + 1];
for(int i = 1; i <= m; i++){
for(int j = 1; j <= n; j++){
dp[i][j] = dp[i - 1][j] + dp[i][j - 1] -dp[i - 1][j - 1] + matrix[i - 1][j - 1] ;
}
}
} public int sumRegion(int row1, int col1, int row2, int col2) {
int iMin = Math.min(row1, row2);
int iMax = Math.max(row1, row2); int jMin = Math.min(col1, col2);
int jMax = Math.max(col1, col2); return dp[iMax + 1][jMax + 1] - dp[iMax + 1][jMin] - dp[iMin][jMax + 1] + dp[iMin][jMin];
}

Python:

class NumMatrix(object):
def __init__(self, matrix):
if matrix is None or not matrix:
return
n, m = len(matrix), len(matrix[0])
self.sums = [ [0 for j in xrange(m+1)] for i in xrange(n+1) ]
for i in xrange(1, n+1):
for j in xrange(1, m+1):
self.sums[i][j] = matrix[i-1][j-1] + self.sums[i][j-1] + self.sums[i-1][j] - self.sums[i-1][j-1] def sumRegion(self, row1, col1, row2, col2):
row1, col1, row2, col2 = row1+1, col1+1, row2+1, col2+1
return self.sums[row2][col2] - self.sums[row2][col1-1] - self.sums[row1-1][col2] + self.sums[row1-1][col1-1]

Python:  

# Time:  ctor:   O(m * n),
# lookup: O(1)
# Space: O(m * n) class NumMatrix(object):
def __init__(self, matrix):
"""
initialize your data structure here.
:type matrix: List[List[int]]
"""
if not matrix:
return m, n = len(matrix), len(matrix[0])
self.__sums = [[0 for _ in xrange(n+1)] for _ in xrange(m+1)]
for i in xrange(1, m+1):
for j in xrange(1, n+1):
self.__sums[i][j] = self.__sums[i][j-1] + matrix[i-1][j-1]
for j in xrange(1, n+1):
for i in xrange(1, m+1):
self.__sums[i][j] += self.__sums[i-1][j] def sumRegion(self, row1, col1, row2, col2):
"""
sum of elements matrix[(row1,col1)..(row2,col2)], inclusive.
:type row1: int
:type col1: int
:type row2: int
:type col2: int
:rtype: int
"""
return self.__sums[row2+1][col2+1] - self.__sums[row2+1][col1] - \
self.__sums[row1][col2+1] + self.__sums[row1][col1] 

C++:

class NumMatrix {
private:
int row, col;
vector<vector<int>> sums;
public:
NumMatrix(vector<vector<int>> &matrix) {
row = matrix.size();
col = row>0 ? matrix[0].size() : 0;
sums = vector<vector<int>>(row+1, vector<int>(col+1, 0));
for(int i=1; i<=row; i++) {
for(int j=1; j<=col; j++) {
sums[i][j] = matrix[i-1][j-1] +
sums[i-1][j] + sums[i][j-1] - sums[i-1][j-1] ;
}
}
} int sumRegion(int row1, int col1, int row2, int col2) {
return sums[row2+1][col2+1] - sums[row2+1][col1] - sums[row1][col2+1] + sums[row1][col1];
}
};

  

类似题目:

[LeetCode] 303. Range Sum Query - Immutable 区域和检索 - 不可变

All LeetCode Questions List 题目汇总

[LeetCode] 304. Range Sum Query 2D - Immutable 二维区域和检索 - 不可变的更多相关文章

  1. LeetCode 304. Range Sum Query 2D - Immutable 二维区域和检索 - 矩阵不可变(C++/Java)

    题目: Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper ...

  2. 304 Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

    给定一个二维矩阵,计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2). 上图子矩阵左上角 (row1, col1) = (2, 1) ,右 ...

  3. [LeetCode] Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  4. [leetcode]304. Range Sum Query 2D - Immutable二维区间求和 - 不变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  5. [LeetCode] Range Sum Query 2D - Mutable 二维区域和检索 - 可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  6. leetcode 304. Range Sum Query 2D - Immutable(递推)

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  7. LeetCode 304. Range Sum Query 2D – Immutable

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  8. 【刷题-LeetCode】304. Range Sum Query 2D - Immutable

    Range Sum Query 2D - Immutable Given a 2D matrix matrix, find the sum of the elements inside the rec ...

  9. 【LeetCode】304. Range Sum Query 2D - Immutable 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 预先求和 相似题目 参考资料 日期 题目地址:htt ...

随机推荐

  1. hexo博客微博图床失效解决办法

    最近在v2ex上看到有人说微博图床开始限制外链了.当时我看了看我的博客,图片还好.第二天再去看的时候就挂了.评论里有人说改一个no-ferrer能解决. 记录一下操作方法. N:\blog\theme ...

  2. git上传者姓名修改

    只需要两个指令 git config user.name 和 git config –global user.name 在控制台中输入git config user.name获取当前的操作名称 修改名 ...

  3. 6、Hadoop 2.6.0 运行

    运行方式 Local (Standalone) Mode Pseudo-Distributed Mode Fully-Distributed Mode Standalone Operation $ s ...

  4. LeetCode 723. Candy Crush

    原题链接在这里:https://leetcode.com/problems/candy-crush/ 题目: This question is about implementing a basic e ...

  5. WinDbg常用命令系列---线程相关操作~*

    ~ (Thread Status) 波浪符(~)命令显示指定线程或当前进程中所有线程的状态. ~ Thread 参数: Thread指定要显示的线程.如果省略此参数,将显示所有线程. 环境: 模式 仅 ...

  6. [codewars] - int32 to IPv4 二进制十进制 ip地址转换

    原题 https://www.codewars.com/kata/int32-to-ipv4/train/java Take the following IPv4 address: 128.32.10 ...

  7. PowerDesigner 创建表的时候 没有自增长Id的设置项

    今天早上同事创建表的时候,在那个界面没有自增长Id的选项,当时我也纳闷,软件肯定都是一样的,设置的步骤都一样(有些配置好的 我就没改过 然后就忘了还改过些什么步骤了),结果还是没有那个选项 百度了一下 ...

  8. codevs 1814 最长链题解

    codevs 1814 最长链题解 题目描述 Description 现给出一棵N个结点二叉树,问这棵二叉树中最长链的长度为多少,保证了1号结点为二叉树的根. 输入描述 Input Descripti ...

  9. pycharm+gitee环境搭建(超详细)

    背景:本地开发代码在没有云托管的时候代码很容易丢掉,如果是小团队,这时候可以使用公司团队注册一个账号共同使用.如果是个人用于代码存储或者用于以后项目经验也推荐gitee.大的团队可以购买 环境:win ...

  10. 第12组 Alpha冲刺(5/6)

    Header 队名:To Be Done 组长博客 作业博客 团队项目进行情况 燃尽图(组内共享) 展示Git当日代码/文档签入记录(组内共享) 注: 由于GitHub的免费范围内对多人开发存在较多限 ...