题目链接:1338: The minimum square sum

Description

Given a prime p(p<108), you are to find min{x2+y2}, where x and y belongs to positive integer, so that x2+y2=0 (mod p).

输入一个质数 p,你找出两个正整数 x 和 y 使得 (x2+y2) mod p = 0,且 x2+y2 最小。

Input

Every line is a p. No more than 10001 test cases.

Output

The minimum square sum as described above.

Sample Input

2
3
5
7
11
13

Sample Output

2
18
5
98
242
13

分析

WUSTOJ 1338: The minimum square sum(Java)的更多相关文章

  1. Maximum Subsequence Sum(java)

    7-1 Maximum Subsequence Sum(25 分) Given a sequence of K integers { N​1​​, N​2​​, ..., N​K​​ }. A con ...

  2. WUSTOJ 1279: Wallace and His Pet(Java)

    1279: Wallace and His Pet 题目   给出一句话(英文),单词总数不超过1000,每个单词不超过10个字符,一句话只有一个唯一的字符"."(句点).将这句话 ...

  3. WUSTOJ 1235: 计算矩阵的鞍点(Java)

    1235: 计算矩阵的鞍点 题目   输出二维数组中行上为最大,列上为最小的元素(称为鞍点)及其位置(行列下标).如果不存在任何鞍点,请输出"404 not found"(不带引号 ...

  4. WUSTOJ 1276: 峰峰不搞G(Java)

    1276: 峰峰不搞G 题目   给 n 数量的油漆,写出最大的数,每个数对应有油漆的花费.更多内容点击标题. 分析   我读完题,就想到用动态规划,结果是Time Limit Exceed.然后看了 ...

  5. WUSTOJ 1247: 递增或递减排序(Java)

    1247: 递增或递减排序 题目   有n个整数,求它的递增排序序列或递减排序序列.更多内容点击标题. 分析 统一升序排序,输出的时候做区分. 先区分是升序还是降序,调用库函数. 代码   方法1,将 ...

  6. WUSTOJ 1311: 开心的金明(Java)动态规划-01背包

    题目链接:

  7. WUSTOJ 1307: 校门外的树(Java)

    题目链接:

  8. WUSTOJ 1302: 区间k大数查询(Java)

    题目链接:

  9. WUSTOJ 1346: DARK SOULS(Java)并查集

    题目链接:1346: DARK SOULS 并查集系列:WUSTOJ 1319: 球(Java)并查集 Description CQ最近在玩一款游戏:DARK SOULS,这是一款以高难度闻名的硬派动 ...

随机推荐

  1. 关于hexo与github使用过程中的问题与笔记

    快速阅读 如何用github 和hexo 创建一个blog 1.github中要新建一个与用户名同一样的仓库, 如:homehe.github.io - 必须是io后缀.一个帐户 只能建立一个 2. ...

  2. Java Hessian实践

    Hessian是基于HTTP的轻量级远程服务解决方案,Hessian向RMI一样,使用二进制进行客户端和服务端的交互.但是与其它二进制远程调用技术(例如RMI)不同的是,它的二进制消息可以移植到其它非 ...

  3. TP5 查询 字符串条件如何实现

      TP5 查询 字符串条件如何实现 当查询条件是 (1,3,8) ,3,4) 这种情况改如何查询呢?   主要用到FIND_IN_SET $where[ ]=>['exp',Db::raw(& ...

  4. Fixed-Length Frames 谈谈网络编程中应用层(基于TCP/UDP)的协议设计

    http://blog.sina.com.cn/s/blog_48d4cf2d0101859x.html 谈谈网络编程中应用层(基于TCP/UDP)的协议设计 (2013-04-27 19:11:00 ...

  5. 基于 Binlog + Flink 实现多表数据同构/异构方案

    https://mp.weixin.qq.com/s/1h942YAcS6fhO5C43hGX-w 什么是数据异构?简单讲,就是将数据进行异地数据异构存储. 数据异构 服务市场使用 BinLake(京 ...

  6. ntpd服务

    yum -y install ntp 服务器端 [root@ip-172-31-6-148~]# vim /etc/ntp.conf ...# Use public servers from thep ...

  7. linux: QT安装时出现段错误segmentation fault

    环境:macOS 10.14.6 VMware Fusion版本:11.0.1 QT版本:qt-creator-linux-x86_64-opensource-2.5.2.bin 安装时出现:segm ...

  8. jenkins关联shell命令修改pom项目版本

    #获取pom文件内的项目版本 version=`awk '/<version>[^<]+<\/version>/{gsub(/<version>|<\/ ...

  9. Docs-.NET-C#-指南-语言参考-预处理器指令:#pragma checksum(C# 参考)

    ylbtech-Docs-.NET-C#-指南-语言参考-预处理器指令:#pragma checksum(C# 参考) 1.返回顶部 1. #pragma checksum(C# 参考) 2015/0 ...

  10. flutter Dismissible 可以在拖动时隐藏的widget

    import 'package:flutter/material.dart'; class DismissedAppPage extends StatefulWidget { @override St ...