LR 算法总结--斯坦福大学机器学习公开课学习笔记
在有监督学习里面有几个逻辑上的重要组成部件[3],初略地分可以分为:模型,参数 和 目标函数。(此部分转自 XGBoost 与 Boosted Tree)
一、模型和参数
模型指给定输入xi如何去预测 输出 yi。我们比较常见的模型如线性模型(包括线性回归和logistic regression)采用
二、目标函数:损失 + 正则
模型和参数本身指定了给定输入我们如何做预测,但是没有告诉我们如何去寻找一个比较好的参数,这个时候就需要目标函数登场了。一般的目标函数包含下面两项
常见的误差函数有平方误差、交叉熵等,而对于线性模型常见的正则化项有L2正则和L1正则。
三、优化算法
讲了这么多有监督学习的基本概念,为什么要讲这些呢? 是因为这几部分包含了机器学习的主要成分,也是机器学习工具设计中划分模块比较有效的办法。其实这几部分之外,还有一个优化算法,就是给定目标函数之后怎么学的问题。之所以我没有讲优化算法,是因为这是大家往往比较熟悉的“机器学习的部分”。而有时候我们往往只知道“优化算法”,而没有仔细考虑目标函数的设计的问题,比较常见的例子如决策树的学习,大家知道的算法是每一步去优化gini entropy,然后剪枝,但是没有考虑到后面的目标是什么。
然后看逻辑回归(LR)算法,主要参考斯坦福大学机器学习公开课,http://www.iqiyi.com/playlist399002502.html
逻辑回归是一种分类算法,而不是一种回归。逻辑回归采用sigmod函数,这是一个自变量取值在整个实数空间,因变量取值在0-1之间的函数,可以将变量的变化映射到0-1之间,从而获得概率值。
sigmod函数形式如下
通过将代入sigmod函数,可以得到如下形式:
这样我们得到了模型和参数,下一步我们确定目标函数,逻辑回归的损失函数是交叉熵函数,求得参数采用的优化算法是最大似然。
假设
可以更加简洁的写作
根据最大似然算法,所求的模型应该使得取得样本的情况的概率越大越好,假设样本相互之间都是独立的,则可以如下表示用模型取得样本情况的概率
也就是独立事件同时发生的概率。为了方便处理,取log则
这也就是逻辑回归的损失函数。
求解这个目标函数采用随机梯度下降的方法即可,
由于sigmod函数的如下特性
可以简单的将求梯度的式子简化如下
这样就可以通过样本不停的更新,直至找到满足要求的参数。
3: Principles of Data Mining, David Hand et al,2001. Chapter 1.5 Components of Data Mining Algorithms, 将数据挖掘算法解构为四个组件:1)模型结构(函数形式,如线性模型),2)评分函数(评估模型拟合数据的质量,如似然函数,误差平方和,误分类率),3)优化和搜索方法(评分函数的优化和模型参数的求解),4)数据管理策略(优化和搜索时对数据的高效访问)。
LR 算法总结--斯坦福大学机器学习公开课学习笔记的更多相关文章
- Andrew N.G的机器学习公开课学习笔记(一):机器学习的动机与应用
机器学习由对于人工智能的研究而来,是一个综合性和应用性学科,可以用来解决计算机视觉/生物学/机器人和日常语言等各个领域的问题,机器学习的目的是让计算机具有像人类的学习能力,这样做是因为我们发现,计算机 ...
- Stanford大学机器学习公开课(二):监督学习应用与梯度下降
本课内容: 1.线性回归 2.梯度下降 3.正规方程组 监督学习:告诉算法每个样本的正确答案,学习后的算法对新的输入也能输入正确的答案 1.线性回归 问题引入:假设有一房屋销售的数据如下: 引 ...
- Stanford大学机器学习公开课(三):局部加权回归、最小二乘的概率解释、逻辑回归、感知器算法
(一)局部加权回归 通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting).如下图的左图.而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为 ...
- Stanford大学机器学习公开课(五):生成学习算法、高斯判别、朴素贝叶斯
(一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解 ...
- Stanford大学机器学习公开课(四):牛顿法、指数分布族、广义线性模型
(一)牛顿法解最大似然估计 牛顿方法(Newton's Method)与梯度下降(Gradient Descent)方法的功能一样,都是对解空间进行搜索的方法.其基本思想如下: 对于一个函数f(x), ...
- Stanford大学机器学习公开课(六):朴素贝叶斯多项式模型、神经网络、SVM初步
(一)朴素贝叶斯多项式事件模型 在上篇笔记中,那个最基本的NB模型被称为多元伯努利事件模型(Multivariate Bernoulli Event Model,以下简称 NB-MBEM).该模型有多 ...
- Web Mining and Big Data 公开课学习笔记 ---lecture1
1.1 LOOK Finding "stuff" on the web or computer or room or hidden in data Finding documen ...
- Web Mining and Big Data 公开课学习笔记 ---lecture0
0.1 课程主要内容:Big data technologies , Machine Learning and AI 0.6 OUTLINE: predict the future using ...
- 传智播客c/c++公开课学习笔记--邮箱账户的破解与邮箱安全防控
一.SMTP协议 SMTP(SimpleMail Transfer Protocol)即简单邮件传输协议. SMTP协议属于TCP/IP协议簇,通过SMTP协议所指定的server,就能够把E-mai ...
随机推荐
- Vue.js学习-组件注册与使用
Vue.js学习文档 地址:https://cn.vuejs.org/v2/guide/ 关于自定义组件注册: 建议将<script></script>放在body标签之后 H ...
- Android中UID和PID的作用和区别
PID:为Process Identifier, PID就是各进程的身份标识,程序一运行系统就会自动分配给进程一个独一无二的PID.进程中止后PID被系统回收,可能会被继续分配给新运行的程序,但是在a ...
- adb命令 判断锁屏
通过adb命令获取手机是否锁屏状态,可以通过下面指令:1.adb shell dumpsys window policy |find "isStatusBarKeyguard"2. ...
- Q-learning之一维世界的简单寻宝
Q-learning的算法: (1)先初始化一个Q table,Q table的行数是state的个数,列数是action的个数. (2)先随机选择一个作为初始状态S1,根据一些策略选择此状态下的动作 ...
- mcp2515屏蔽寄存器和过滤寄存器的学习
mcp2515是can控制器,简单的来讲,就是只要配置好寄存器,芯片就能够自动的解析can数据帧,同时保存到接收缓存中,提醒单片机可以读取can的数据字节. 读取的方式是快速spi,可以达到10Mbi ...
- HDU 6091 - Rikka with Match
思路 树形dp,设计状态如下: 设 $dp_u_i_0$表示 以点 u 为根的子树 最大匹配数模 m 为 i 时,且 u 点没有匹配的方案数 DP[u][i][1] 表示 以点 u 为根的子树 最大匹 ...
- python的虚拟环境管理工具venv使用方法介绍及与nodejs的包管理方式对比
一.nodejs 包管理方式 我们知道, nodejs的包管理工具npm可以安装项目所需要的包,安装方法及区别如下: npm i module_name -g 全局安装 npm i module_na ...
- Numpy | 02 Ndarray 对象
NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引. ndarray 对象是用于存放同类型元素的多维数组. ndarr ...
- Python-内存泄漏 持续增长 检查点
仅个人目前遇见的内存问题, 可能不适用所有问题 一下只是简单的实例代码, 可能跑不起来, 只是看看 可变变量参数 小例子: def foo(a, b=[]): b.append(a) print b ...
- 使用Visual Studio Code编辑Processing
最近想弄Sublime Text 3写Processing,但由于各种不知名原因导致无法编译,就想着换自去年以来超火的VScode试一下,还真给我试成功了. 1.下载https://code.visu ...