Zhulina 的高分子刷理论
高分子刷的解析平均场理论有两种表述方式。一个是MWC理论(Macromolecules 1988, 21, 2610-2619),另外一个就是Zhulina和Birshtein这两位俄罗斯老太太的理论(Macromolecules 1991, 24, 140-149),后者在物理上更直接,我重新整理一下,是为此文。
高分子刷的(平均一根链的)自由能\(\Delta F\)为链的熵弹性\(\Delta F_{el}\)与排除体积作用能\(\Delta F_{conc}\)之和:
\begin{equation}\Delta F=\Delta F_{el}+\Delta F_{conc}\label{eq:F}\end{equation}
排除体积作用能
\begin{equation}\Delta F_{conc}=\frac{\sigma}{a^3}\int f[\varphi(x)] \mathrm dx\label{eq:Fconc}\end{equation}
其中\(\sigma\)为平均一根链在接枝面上所占据的面积,\(\varphi(x)\)为高分子体积分数,\(f[\varphi(x)]/a^3\)为相互自由能密度。
接枝链的熵弹性:
\begin{equation*}\begin{split}\Delta F_{el}(x')&=\frac{3}{2a^2}\int_0^N\left (\frac{\mathrm dx}{\mathrm dn}\right )^2\mathrm dn=\frac{3}{2a^2}\int_0^N\frac{\mathrm dx}{\mathrm dn}\frac{\mathrm dx}{\mathrm dn}\mathrm dn\\&=\frac{3}{2a^2}\int_0^{x'}\frac{\mathrm dx}{\mathrm dn}\mathrm dx=\frac{3}{2a^2}\int_0^{x'}\frac{\mathrm dx}{\mathrm dn}\mathrm dx\\&=\frac{3}{2a^2}\int_0^{x'}E(x,x')\mathrm dx\end{split}\end{equation*}
其中\(x'\)为高分子链的末端所在位置,\(H\)为刷的高度,\(E(x,x')=\frac{\mathrm dx}{\mathrm dn}\),并满足:
\begin{equation}\int_0^{x'} \frac{1}{E(x,x')}\mathrm dx=N \label{eq:Econs}\end{equation}
接枝链的末端的分布为\(g'(x')\),\(g'(x')\mathrm dx'\)为\(x'\)处\(A\mathrm dx'\)体积范围内接枝链末端的数目,满足
$$A\int_0^H g'(x')\mathrm dx'=n_P$$
其中\(A\)为接枝表面的总面积,\(n_P\)为接枝链的总数目。
平均一条链的熵弹性能为:
\begin{equation}\begin{split}\Delta F_{el}&=\frac{A}{n_P}\int_0^H \Delta F_{el}(x')g'(x')\mathrm dx'\\&=\frac{3}{2a^2}\int_0^H g(x')\mathrm dx'\int_0^{x'}E(x,x')\mathrm dx \end{split}\label{eq:Fel}\end{equation}
其中,\(g(x')=\frac{A}{n_P}g'(x')\),为\(x'\)处\(\mathrm dx'\)厚度范围内接枝链末端的数目,满足\(\int_0^H g(x')\mathrm dx'=1\)。
高分子体积分数\(\varphi(x)\)满足:
\begin{equation}\begin{split}\varphi(x)&=\frac{a^3}{\sigma}\int_0^H\frac{\mathrm dn}{\mathrm dx} g(x')\mathrm dx'\\&=\frac{a^3}{\sigma}\int_0^H\frac{g(x')}{E(x,x')} \mathrm dx'\end{split}\label{eq:varphi}\end{equation}\begin{equation}\sigma\int_0^{H} \varphi(x)\mathrm dx=Na^3\label{eq:varphicons}\end{equation}
要得到刷的结构,需要对如下泛函求变分:
\begin{equation}F'=\Delta F+\lambda_1 \int_0^{H} \varphi(x)\mathrm dx +\int_0^H \lambda_2(x')\mathrm dx'\int_0^{x'} \frac{1}{E(x,x')}\mathrm dx\label{eq:Fp}\end{equation}
其中\(\lambda_1\)和\(\lambda_2(x')\)分别为拉格朗日乘子。
对\(F'\)变分有:
\begin{equation}\begin{split}\delta F'=&\delta \Delta F_{el}+\delta \Delta F_{conc} + \lambda_1 \int_0^{H}\delta \varphi(x)\mathrm dx\\&-\int_0^H \lambda_2(x')\mathrm dx'\int_0^{x'} \frac{\delta E(x,x')}{E^2(x,x')}\mathrm dx\\=& \frac{3}{2a^2}\int_0^H \mathrm dx'\int_0^{x'}\left [g(x')\delta E(x,x') + E(x,x') \delta g(x')\right ]\mathrm dx \\&+\frac{\sigma}{a^3}\int \frac{\delta f[\varphi(x)]}{\delta \varphi(x)} \delta \varphi(x) \mathrm dx + \lambda_1 \int_0^{H}\delta \varphi(x)\mathrm dx\\&-\int_0^H \lambda_2(x')\mathrm dx'\int_0^{x'} \frac{\delta E(x,x')}{E^2(x,x')}\mathrm dx\end{split}\label{eq:var}\end{equation}
根据方程\eqref{eq:varphi},有:
\begin{equation}\delta \varphi(x)=\frac{a^3}{\sigma}\int_0^H\left [\frac{\delta g(x')}{E(x,x')}-\frac{g(x')}{E^2(x,x')}\delta E(x,x') \right ] \mathrm dx'\label{eq:varvarphi}\end{equation}
将方程\eqref{eq:varvarphi}带入方程\eqref{eq:var},得
\begin{equation}\begin{split}\delta F'= &\int_0^H \mathrm dx' \int_0^{x'} \mathrm dx \delta E(x,x')\\&\left [\frac{3g(x')}{2a^2}-\frac{\lambda_2(x')}{E^2(x,x')}-\left (\lambda_1+\frac{\delta f[\varphi(x)]}{\delta \varphi(x)}\right )\frac{g(x')}{E^2(x,x')} \right ]\\& \int_0^H \delta g(x') \mathrm dx' \int_0^{x'} \mathrm dx \\&\left [\frac{3E(x,x')}{2a^2}+\frac{1}{E(x,x')}\left (\lambda_1+\frac{\delta f[\varphi(x)]}{\delta \varphi(x)}\right ) \right ]\end{split}\label{eq:varesult}\end{equation}
相应地我们可得如下两个变分方程:
\begin{equation}\frac{3g(x')}{2a^2}-\frac{\lambda_2(x')}{E^2(x,x')}-\left (\lambda_1+\frac{\delta f[\varphi(x)]}{\delta \varphi(x)}\right )\frac{g(x')}{E^2(x,x')} =0\label{eq:var1}\end{equation}\begin{equation}\frac{3E(x,x')}{2a^2}+\frac{1}{E(x,x')}\left (\lambda_1+\frac{\delta f[\varphi(x)]}{\delta \varphi(x)}\right )=0\label{eq:var2}\end{equation}
由方程\eqref{eq:var1},
\begin{equation}E^2(x,x')=U_1(x')-U_2(x)\label{eq:EU12}\end{equation}
其中,
\begin{equation} U_1(x')=\frac{2a^2\lambda_2(x')}{3g(x')} \label{eq:U1} \end{equation}\begin{equation} U_2(x)=-\frac{2a^2}{3}\left ( \lambda_1+\frac{\delta f[\varphi(x)]}{\delta \varphi(x)}\right ) \label{eq:U2} \end{equation}
链的末端不受拉伸,则\(E(x,x)=0\),于是 \(U_1=U_2\),我们有
\begin{equation}E(x,x')=\sqrt{U(x')-U(x)}\label{eq:EU}\end{equation}
\(U(x)\)仍是未知函数,将方程\eqref{eq:EU}代入方程\eqref{eq:Econs},得
\begin{equation} U(x)=\frac{\pi^2 x^2}{4N^2} \label{eq:Ux}\end{equation}
将方程\eqref{eq:Ux}代入方程\eqref{eq:EU}得
\begin{equation} E(x,x')=\frac{\pi }{2N}\sqrt{x'^2-x^2}\label{eq:Ex}\end{equation}
将方程\eqref{eq:Ux}代入方程\eqref{eq:U2}得
\begin{equation}\lambda_1+\frac{\delta f[\varphi(x)]}{\delta \varphi(x)}=-\frac{3\pi^2x^2}{8N^2}\label{eq:varphix}\end{equation}
将方程\eqref{eq:Ux}代入方程\eqref{eq:varphicons},得如下积分方程:
\begin{equation}\varphi(x)=\frac{2Na^3}{\pi\sigma}\int_0^{x'}\frac{g(x')}{\sqrt{x'^2-x^2}}\mathrm dx\label{eq:inteq}\end{equation}
从方程\eqref{eq:varphix}到高分子体积分数\(\varphi(x)\),解积分方程\eqref{eq:inteq}就可得高分子链末端的分布。积分方程的解可从积分方程手册中查到,在pp21。
Zhulina 的高分子刷理论的更多相关文章
- UI-初识君面之理论篇
一个好的app不光要用好的功能,还要有好的界面,这样内外兼修才算得上是一个好的App.其实跟人一样,不能只刷帅,要有内涵(看清楚哦,内涵不是指闷骚).不知不觉在园子里已经晃了八年,来深也八年了,.NE ...
- 【bb平台刷课记】wireshark结合实例学抓包
[bb平台刷课记]wireshark结合实例学抓包 背景:本校形势与政策课程课需要在网上观看视频的方式来修得学分,视频网页自带"播放器不可快进+离开窗口自动暂停+看完一集解锁下一集(即不能同 ...
- pcDuino 刷系统-卡刷
准备: pcduino : 点此购买 支持HDMI的显示器:点此购买 或参考无显示器刷机与使用.至少1张4G microSD卡,如果内存卡不大,可以用内存卡刷内核,用u盘刷系统 背景:本教程中使用的 ...
- RocketMQ初步应用架构理论
RocketMQ初步应用架构理论 写给RocketMQ架构应用入门,内容涉及它的设计机理以及推到出来的应用注意事项,入门人员请看. 稍微涉及技术细节,留以我设计中间件时参考,将来整理深度文档时会抽取走 ...
- ZJOI2019一轮停课刷题记录
Preface 菜鸡HL终于狗来了他的省选停课,这次的时间很长,暂定停到一试结束,不过有机会二试的话还是可以搞到4月了 这段时间的学习就变得量大而且杂了,一般以刷薄弱的知识点和补一些新的奇怪技巧为主. ...
- POJ 水题(刷题)进阶
转载请注明出处:優YoU http://blog.csdn.net/lyy289065406/article/details/6642573 部分解题报告添加新内容,除了原有的"大致题意&q ...
- NOIp2018停课刷题记录
Preface 老叶说了高中停课但是初中不停的消息后我就为争取民主献出一份力量 其实就是和老师申请了下让我们HW的三个人听课结果真停了 那么还是珍惜这次机会好好提升下自己吧不然就\(AFO\)了 Li ...
- 三分钟分布式CAP理论
分布式系统架构理论,定义了三种指标,理论说我们最多只能满足两个. ## 分布式系统 首先我们这个理论所说的分布式系统,是指系统内会共享数据,互相有连接有交互,才能完成系统功能的的分布式系统.而这个理论 ...
- 转--O2O刷单“黑市”折射下的泡沫#神作#
“XX打车和XX用车这样的公司,太不真诚.从前补贴的是现金,现在补贴的都是各种券,还有各种使用上的规则,为什么要设置这么多的限制?反正都要花一样的钱,为什么不能痛快点?让用户体验好一点?” 说这个话的 ...
随机推荐
- IOS开发之——自定义导航控制器
BasicNavigationViewController:UINavigationViwController /* 隐藏导航底部线条 */ -(void)viewDidLoad{ [super ...
- Opencv step by step - 图像变换
这里举出三个案例: #include <cv.h> #include <highgui.h> void image_smooth(IplImage * image) { cvN ...
- 百度地图ip定位,不算bug的bug
做为一个入行不足两年的菜鸟,能在博客园写下第一篇博客,是需要多大的勇气啊.主要还是怕大神们喷啊.其次自己文笔实在太差了. 哈哈~还请各位大神,口下留情啊. 首先说下我的需求:一个需要城市分站的手机站. ...
- C# 有关命名法
常用的几种:匈牙利命名法,骆驼命名法,帕斯卡(pascal)命名法就说了. 总结下VS所用的标准命名: 1 ADO.NET 命名规范 数据类型 数据类型简写 标准命名举例 Connection con ...
- Mininet建立topology zoo中的拓扑
以前用Mininet建立拓扑都是在别人的代码上进行需求上的修改,这次从头开始将topology zoo(http://www.topology-zoo.org/)中的拓扑用Mininet建立,不失一般 ...
- jQuery问题:$XXX is not a function
用火狐浏览器打开,js代码一段不执行,F12以后看见下面的错误: 网上查看说是jQuery文件引用的问题,把jQuery.js引入语句修改了一下,果然没有错了. 我原来的引用语句是:<scrip ...
- AngularJS-MVC
前言: 编程是一个很苦恼的工作,因为需要我们不断的去学习,不断的去专研,我本身就不是一个很喜欢学习的孩子,要不然从小到大也没有成绩好过,但是,我从来没有缺少过勤奋,还是让我们言归正传来说下 我们这段时 ...
- iOS开发之UITextView,设置textView的行间距及placeholder
一.设置textView的行间距 1.如果只是静态显示textView的内容为设置的行间距,执行如下代码: // textview 改变字体的行间距 NSMutableParagraph ...
- Xamarin.Forms——尺寸大小(五 Dealing with sizes)
如之前所见的大量可视化元素均有自己的尺寸大小: iOS的状态栏高度为20,所以我们需要调整iOS的页面的Padding值,留出这个高度. BoxView设置它的默认宽度和高度为40. Frame的默认 ...
- 在Web Service中傳送Dictionary
有個需求,想在Web Service中傳遞Dictionary<string, string>參數,例如: 排版顯示純文字 [WebMethod] public Dictionary< ...