特征向量-Eigenvalues_and_eigenvectors#Graphs
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#Graphs
A {\displaystyle A} ,它的特征向量(eigenvector,也译固有向量或本征向量) v {\displaystyle v} 经过这个线性变换[1]之后,得到的新向量仍然与原来的 v {\displaystyle v} 保持在同一条直线上,但其长度或方向也许会改变。即
A {\displaystyle A} ,它的特征向量(eigenvector,也译固有向量或本征向量) v {\displaystyle v} 经过这个线性变换[1]之后,得到的新向量仍然与原来的 v {\displaystyle v} 保持在同一条直线上,但其长度或方向也许会改变。即
In linear algebra, an eigenvector or characteristic vector of a linear transformation is a non-zero vector that does not change its direction when that linear transformation is applied to it. More formally, if T is a linear transformation from a vector space V over a field F into itself and v is a vector in V that is not the zero vector, then v is an eigenvector of T if T(v) is a scalar multiple of v. This condition can be written as the equation
- T ( v ) = λ v , {\displaystyle T(\mathbf {v} )=\lambda \mathbf {v} ,}
where λ is a scalar in the field F, known as the eigenvalue, characteristic value, or characteristic root associated with the eigenvector v.
If the vector space V is finite-dimensional, then the linear transformation T can be represented as a square matrix A, and the vector v by a column vector, rendering the above mapping as a matrix multiplication on the left hand side and a scaling of the column vector on the right hand side in the equation
- A v = λ v . {\displaystyle A\mathbf {v} =\lambda \mathbf {v} .}
There is a correspondence between n by n square matrices and linear transformations from an n-dimensional vector space to itself. For this reason, it is equivalent to define eigenvalues and eigenvectors using either the language of matrices or the language of linear transformations.[1][2]
Geometrically an eigenvector, corresponding to a real nonzero eigenvalue, points in a direction that is stretched by the transformation and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed.[3]
- A v = λ v {\displaystyle Av=\lambda v} ,
λ {\displaystyle \lambda } 为标量,即特征向量的长度在该线性变换下缩放的比例,称 λ {\displaystyle \lambda } 为其特征值(本征值)。如果特征值为正,则表示 v {\displaystyle v} 在经过线性变换的作用后方向也不变;如果特征值为负,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。
- A v = λ v {\displaystyle Av=\lambda v} ,
λ {\displaystyle \lambda } 为标量,即特征向量的长度在该线性变换下缩放的比例,称 λ {\displaystyle \lambda } 为其特征值(本征值)。如果特征值为正,则表示 v {\displaystyle v} 在经过线性变换的作用后方向也不变;如果特征值为负,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。
特征向量-Eigenvalues_and_eigenvectors#Graphs的更多相关文章
- 特征向量-Eigenvalues_and_eigenvectors#Graphs 线性变换
总结: 1.线性变换运算封闭,加法和乘法 2.特征向量经过线性变换后方向不变 https://en.wikipedia.org/wiki/Linear_map Examples of linear t ...
- Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst. "Convolutional neural networks o ...
- 论文解读二代GCN《Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering》
Paper Information Title:Convolutional Neural Networks on Graphs with Fast Localized Spectral Filteri ...
- 论文解读《The Emerging Field of Signal Processing on Graphs》
感悟 看完图卷积一代.二代,深感图卷积的强大,刚开始接触图卷积的时候完全不懂为什么要使用拉普拉斯矩阵( $L=D-W$),主要是其背后的物理意义.通过借鉴前辈们的论文.博客.评论逐渐对图卷积有了一定的 ...
- 论文解读(AutoSSL)《Automated Self-Supervised Learning for Graphs》
论文信息 论文标题:Automated Self-Supervised Learning for Graphs论文作者:Wei Jin, Xiaorui Liu, Xiangyu Zhao, Yao ...
- 论文解读(MGAE)《MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs》
论文信息 论文标题:MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs论文作者:Qiaoyu Tan, Ninghao L ...
- 论文阅读 Inductive Representation Learning on Temporal Graphs
12 Inductive Representation Learning on Temporal Graphs link:https://arxiv.org/abs/2002.07962 本文提出了时 ...
- 知识图谱顶刊综述 - (2021年4月) A Survey on Knowledge Graphs: Representation, Acquisition, and Applications
知识图谱综述(2021.4) 论文地址:A Survey on Knowledge Graphs: Representation, Acquisition, and Applications 目录 知 ...
- PCA 协方差矩阵特征向量的计算
人脸识别中矩阵的维数n>>样本个数m. 计算矩阵A的主成分,根据PCA的原理,就是计算A的协方差矩阵A'A的特征值和特征向量,但是A'A有可能比较大,所以根据A'A的大小,可以计算AA'或 ...
随机推荐
- C# 读取本地图片 转存到其他盘符
UpFileContent upfile = new UpFileContent(); upfile.StationImageName = "123.png"; FileStrea ...
- SQLServer中临时表与表变量的区别分析(转)
在实际使用的时候,我们如何灵活的在存储过程中运用它们,虽然它们实现的功能基本上是一样的,可如何在一个存储过程中有时候去使用临时表而不使用表变量,有时候去使用表变量而不使用临时表呢? 临时表 临时表与永 ...
- 中文在unicode中的编码范围
以前写过一篇贴子是写中文在unicode中的编码范围 unicode中文范围,但写的不是很详细,今天再次研究了下unicode,并给出详细的unicode取值范围. 本次研究的unicode对象是un ...
- lr数据库参数化取数:The query result is empty and same is the parameter file问题原因
出现这个问题的原因: 是因为我们的查询结果存在中文 如果查询结果没有中文,显示正常 解决办法: 新建一个数据源: 重新再选择这个数据源,再次查询: 说明不是连接字符串的问题或者是mysql驱动的问题 ...
- 转-CSS3 圆角(border-radius)
CSS3 圆角(border-radius) 前缀 例1 例2:无边框 书写顺序 其它 支持性 值:半径的长度 前缀 -moz(例如 -moz-border-radius)用于Firefox -w ...
- EF 实体映射
1.继承自EntityTypeConfiguration 2.ToTable映射表名 3.HasKey映射主键,Property配置属性,并返回PrimitivePropertyConfigurati ...
- 寒冰王座[HDU1248]
寒冰王座 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- ! cocos2d 同一个sprite的触控问题
如果对一个A sprite添加触控,然后在一个场景中创建四个A的实例,那么1234逐个添加的话,只有最后一个会被点击到.其他的将不会响应.
- 【转】Profiling application LLC cache misses under Linux using Perf Events
转自:http://ariasprado.name/2011/11/30/profiling-application-llc-cache-misses-under-linux-using-perf-e ...
- [Cocos2d-x For WP8]Menu菜单
菜单栏这是游戏里面基本的控件来的, 头文件: #include <CCMenu.h> 继承关系图: 头文件: #include < ...