特征向量-Eigenvalues_and_eigenvectors#Graphs
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#Graphs
A {\displaystyle A} ,它的特征向量(eigenvector,也译固有向量或本征向量) v {\displaystyle v}
经过这个线性变换[1]之后,得到的新向量仍然与原来的 v {\displaystyle v}
保持在同一条直线上,但其长度或方向也许会改变。即
A {\displaystyle A} ,它的特征向量(eigenvector,也译固有向量或本征向量) v {\displaystyle v}
经过这个线性变换[1]之后,得到的新向量仍然与原来的 v {\displaystyle v}
保持在同一条直线上,但其长度或方向也许会改变。即
In linear algebra, an eigenvector or characteristic vector of a linear transformation is a non-zero vector that does not change its direction when that linear transformation is applied to it. More formally, if T is a linear transformation from a vector space V over a field F into itself and v is a vector in V that is not the zero vector, then v is an eigenvector of T if T(v) is a scalar multiple of v. This condition can be written as the equation
- T ( v ) = λ v , {\displaystyle T(\mathbf {v} )=\lambda \mathbf {v} ,}
where λ is a scalar in the field F, known as the eigenvalue, characteristic value, or characteristic root associated with the eigenvector v.
If the vector space V is finite-dimensional, then the linear transformation T can be represented as a square matrix A, and the vector v by a column vector, rendering the above mapping as a matrix multiplication on the left hand side and a scaling of the column vector on the right hand side in the equation
- A v = λ v . {\displaystyle A\mathbf {v} =\lambda \mathbf {v} .}
There is a correspondence between n by n square matrices and linear transformations from an n-dimensional vector space to itself. For this reason, it is equivalent to define eigenvalues and eigenvectors using either the language of matrices or the language of linear transformations.[1][2]
Geometrically an eigenvector, corresponding to a real nonzero eigenvalue, points in a direction that is stretched by the transformation and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed.[3]
- A v = λ v {\displaystyle Av=\lambda v}
,
λ {\displaystyle \lambda } 为标量,即特征向量的长度在该线性变换下缩放的比例,称 λ {\displaystyle \lambda }
为其特征值(本征值)。如果特征值为正,则表示 v {\displaystyle v}
在经过线性变换的作用后方向也不变;如果特征值为负,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。
- A v = λ v {\displaystyle Av=\lambda v}
,
λ {\displaystyle \lambda } 为标量,即特征向量的长度在该线性变换下缩放的比例,称 λ {\displaystyle \lambda }
为其特征值(本征值)。如果特征值为正,则表示 v {\displaystyle v}
在经过线性变换的作用后方向也不变;如果特征值为负,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。
特征向量-Eigenvalues_and_eigenvectors#Graphs的更多相关文章
- 特征向量-Eigenvalues_and_eigenvectors#Graphs 线性变换
总结: 1.线性变换运算封闭,加法和乘法 2.特征向量经过线性变换后方向不变 https://en.wikipedia.org/wiki/Linear_map Examples of linear t ...
- Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst. "Convolutional neural networks o ...
- 论文解读二代GCN《Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering》
Paper Information Title:Convolutional Neural Networks on Graphs with Fast Localized Spectral Filteri ...
- 论文解读《The Emerging Field of Signal Processing on Graphs》
感悟 看完图卷积一代.二代,深感图卷积的强大,刚开始接触图卷积的时候完全不懂为什么要使用拉普拉斯矩阵( $L=D-W$),主要是其背后的物理意义.通过借鉴前辈们的论文.博客.评论逐渐对图卷积有了一定的 ...
- 论文解读(AutoSSL)《Automated Self-Supervised Learning for Graphs》
论文信息 论文标题:Automated Self-Supervised Learning for Graphs论文作者:Wei Jin, Xiaorui Liu, Xiangyu Zhao, Yao ...
- 论文解读(MGAE)《MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs》
论文信息 论文标题:MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs论文作者:Qiaoyu Tan, Ninghao L ...
- 论文阅读 Inductive Representation Learning on Temporal Graphs
12 Inductive Representation Learning on Temporal Graphs link:https://arxiv.org/abs/2002.07962 本文提出了时 ...
- 知识图谱顶刊综述 - (2021年4月) A Survey on Knowledge Graphs: Representation, Acquisition, and Applications
知识图谱综述(2021.4) 论文地址:A Survey on Knowledge Graphs: Representation, Acquisition, and Applications 目录 知 ...
- PCA 协方差矩阵特征向量的计算
人脸识别中矩阵的维数n>>样本个数m. 计算矩阵A的主成分,根据PCA的原理,就是计算A的协方差矩阵A'A的特征值和特征向量,但是A'A有可能比较大,所以根据A'A的大小,可以计算AA'或 ...
随机推荐
- [杂]DeadLock, Isolation Level, EntityFramework
由于没有注意到EF事务的默认隔离级别是Serializable,(据说EF6.0以后默认隔离级别改成了Read_Commit_Snapshot)--这里有误,应该是加了TransactionScope ...
- Sonar+Hudson+Maven构建系列之三:安装Hudson
摘要:其实前面介绍过Sonar,后面Hudson安装就方便了.安装Hudson之前说说Hudson相关的事,现在世面上的有两种与Hudson相关的CI工具,一个是Hudson,一个是Jenkins,这 ...
- android获取string.xml的值(转)
为什么需要把应用中出现的文字单独存放在string.xml文件中呢? 一:是为了国际化,当需要国际化时,只需要再提供一个string.xml文件,把里面的汉子信息都修改为对应的语言(如,English ...
- ML 01、机器学习概论
机器学习原理.实现与实践——机器学习概论 如果一个系统能够通过执行某个过程改进它的性能,这就是学习. ——— Herbert A. Simon 1. 机器学习是什么 计算机基于数据来构建概率统计模型并 ...
- CC2540开发板学习笔记(一)——LED点亮
一.实验内容: 点亮LDE1.2 二.实验原理: 1.电路原理图: 就一个发光二极管串联一个电阻.电阻是为了防止电流过大.利用发光二极管的单向导电性,在P1为高电平是点亮LED,在低电平是熄灭LED. ...
- LightOJ1025 The Specials Menu(区间DP)
给一个字符串,问有几种删字符的方式使删后的非空字符串是个回文串. 当然区间DP:dp[i][j]表示子串stri...strj的方案数 感觉不好转移,可能重复算了.我手算了"AAA" ...
- The number of divisors(约数) about Humble Numbers[HDU1492]
The number of divisors(约数) about Humble Numbers Time Limit: 2000/1000 MS (Java/Others) Memory Lim ...
- Android WebView常见问题解决方案汇总
问题目录: 1.为WebView自定义错误显示界面: 2.WebView cookies清理 3.清理cache 和历史记录 4.判断WebView是否已经滚动到页面底端 5.URL拦截 6.处理We ...
- CCSpriteBatchNode的优化性能
当将大量精灵加载到CCLayer时,如果直接利用[self addChild:sprite]去加载,每加载一个精灵,都必须open,draw,close, 而利用 CCSpriteBatchNode去 ...
- POJ 1724 ROADS(二维SPFA)
题目链接 用STL实现超时了,用普通队列500+,看到spfa,反应太迟钝了. #include <cstring> #include <cstdio> #include &l ...