BZOJ4417: [Shoi2013]超级跳马
Description

Input
Output
Sample Input
Sample Output
HINT
对于100%的数据,1 ≤ n ≤ 50,2 ≤ m ≤ 10^9
#include<cstdio>
#include<cctype>
#include<queue>
#include<cmath>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=next[i])
using namespace std;
const int BufferSize=<<;
char buffer[BufferSize],*head,*tail;
inline char Getchar() {
if(head==tail) {
int l=fread(buffer,,BufferSize,stdin);
tail=(head=buffer)+l;
}
return *head++;
}
inline int read() {
int x=,f=;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-;
for(;isdigit(c);c=getchar()) x=x*+c-'';
return x*f;
}
typedef long long ll;
const int mod=;
const int maxn=;
int N;
struct Matrix {
ll A[maxn][maxn];
Matrix operator * (const Matrix& b) const {
Matrix c;
rep(i,,N) rep(j,,N) {
c.A[i][j]=;
rep(k,,N) c.A[i][j]+=A[i][k]*b.A[k][j];
c.A[i][j]%=mod;
}
return c;
}
};
void pow(Matrix& ans,int n) {
Matrix t;t=ans;n--;
while(n) {
if(n&) ans=ans*t;
t=t*t;n>>=;
}
}
int main() {
int n=read(),m=read();
Matrix ans;N=n*;
memset(ans.A,,sizeof(ans.A));
rep(i,,n) ans.A[i][i+n]=;
rep(i,n+,*n) {
ans.A[i][i-n]=ans.A[i-n][i-n]=;
if(i-n>) ans.A[i-n-][i-n]=;
if(i-n<n) ans.A[i-n+][i-n]=;
}
pow(ans,m-);
printf("%lld\n",(ans.A[N][]+(n>?ans.A[N-][]:))%mod);
return ;
}
BZOJ4417: [Shoi2013]超级跳马的更多相关文章
- [BZOJ 4417][Shoi2013]超级跳马
4417: [Shoi2013]超级跳马 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 379 Solved: 230[Submit][Status ...
- 洛谷 P3990 [SHOI2013]超级跳马 解题报告
P3990 [SHOI2013]超级跳马 题目描述 现有一个\(n\) 行 \(m\) 列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘. ...
- [题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化
这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你 ...
- 【BZOJ4417】: [Shoi2013]超级跳马
题目链接: 传送. 题解: 矩阵快速幂优化DP. 先考虑$nm^2$DP,设$f_{(i,j)}$表示从$1,1$到$i,j$的方案,显然这个方程和奇偶性有关,我们考虑某列的$i$同奇偶性的转移和奇偶 ...
- 【bzoj4417】[Shoi2013]超级跳马 矩阵乘法
题目描述 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可行的跳法. ...
- [bzoj4417] [洛谷P3990] [Shoi2013] 超级跳马
Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...
- Luogu P3990 [SHOI2013]超级跳马
这道题还是一道比较不可做的矩阵题 首先我们先YY一个递推的算法:令f[i][j]表示走到第i行第j列时的方案数,那么有以下转移: f[i][j]=f[i-1][j-2*k+1]+f[i+1][j-2* ...
- P3990 [SHOI2013]超级跳马
传送门 首先不难设\(f[i][j]\)表示跳到\((i,j)\)的方案数,那么不难得到如下转移 \[f[i][j]=\sum\limits_{k=1}^{\frac n2}f[i-2k+1][j-1 ...
- [SHOI2013]超级跳马
题目描述 现有一个n 行m 列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.试求跳法种数mod 30011. 输入输出格式 输入格式: ...
随机推荐
- SQL常见笔试面试题
sql理论题 1.触发器的作用? 答:触发器是一中特殊的存储过程,主要是通过事件来触发而被执行的.它可以强化约束,来维护数据的完整性和一致性,可以跟踪数据库内的操作从而不允许未经许可的更新和变化.可以 ...
- web iphone css 兼容性
解决IPHONE网页兼容(部分字号变大): body{-webkit-text-size-adjust:none;}
- 使用JS构建简单Map(转)
转载自:http://freejvm.iteye.com/blog/768025 最近使用源生的js处理页面数据,所谓源生的就是指没有经过包装的.最基本的JavaScript代码: 像使用ext,jQ ...
- IE的浏览器模式和文档模式
只有IE浏览器中才会有“浏览器模式”和“文档模式”,兼容性视图涉及两个重要的功能 便是“浏览器模式[browser mode]”和“文档模式[document mode]”,在IE8/IE9中按F12 ...
- JDK1.7 HashMap 源码分析
概述 HashMap是Java里基本的存储Key.Value的一个数据类型,了解它的内部实现,可以帮我们编写出更高效的Java代码. 本文主要分析JDK1.7中HashMap实现,JDK1.8中的Ha ...
- osg事件处理器osgGA::GUIEventHandler handle
bool handle(const osgGA::GUIEventAdapter& ea, osgGA::GUIActionAdapter& aa) { osgViewer::View ...
- Android Studio安装与配置
谷歌已经停止支持eclipse开发android了,转向android studio是大势所趋,笔者由于电脑配置的原因, 以前迟迟不愿意向android studio,现如今因为开始学习materia ...
- /etc/profile和$HOME/.bash_profile
Linux中含有两个重要的文件 /etc/profile和$HOME/.bash_profile 每当系统登陆时都要读取这两个文件,用来初始化系统所用到的变量,其中/etc/profile是超级用户所 ...
- Java IO流系统整理
Java IO流的分类 Java中的流,可以从不同的角度进行分类. 按流向分类: 输入流: 程序可以从中读取数据的流.输出流: 程序能向其中写入数据的流. 按数据传输单位分类: 字节流:以字节(8位二 ...
- 使用HtmlAgilityPack抓取网页数据
XPath 使用路径表达式来选取 XML 文档中的节点或节点集.节点是通过沿着路径 (path) 或者步 (steps) 来选取的. 下面列出了最有用的路径表达式: nodename:选取此节点的所有 ...