BZOJ2739 : 最远点
把环倍长,设$w(i,j)$表示对于$i$,决策$j$的价值,如果$j$在$[i,i+n]$,那么$w(i,j)=dis(i,j)$,否则$w(i,j)=-dis(i,j)$。
则$w$满足四边形不等式,最优决策满足完全单调性,分治求解即可。
时间复杂度$O(n\log n)$。
#include<cstdio>
#define N 500010
int T,n,i,f[N];struct P{int x,y,p;}a[N<<1];
inline void read(int&a){
char c;bool f=0;a=0;
while(!((((c=getchar())>='0')&&(c<='9'))||(c=='-')));
if(c!='-')a=c-'0';else f=1;
while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';
if(f)a=-a;
}
inline bool cmp(int i,int j,int k){
long long x=1LL*(a[i].x-a[j].x)*(a[i].x-a[j].x)+1LL*(a[i].y-a[j].y)*(a[i].y-a[j].y),
y=1LL*(a[i].x-a[k].x)*(a[i].x-a[k].x)+1LL*(a[i].y-a[k].y)*(a[i].y-a[k].y);
if(j<i||j>i+n)x=-x;
if(k<i||k>i+n)y=-y;
return x==y?a[j].p>a[k].p:x<y;
}
void solve(int l,int r,int dl,int dr){
int mid=(l+r)>>1,dm=dl;
for(int i=dl+1;i<=dr;i++)if(cmp(mid,dm,i))dm=i;
f[mid]=a[dm].p;
if(l<mid)solve(l,mid-1,dl,dm);
if(r>mid)solve(mid+1,r,dm,dr);
}
int main(){
read(T);
while(T--){
read(n);
for(i=1;i<=n;i++)read(a[i].x),read(a[i].y),a[i].p=i,a[n+i]=a[i];
solve(1,n,1,n+n);
for(i=1;i<=n;i++)printf("%d\n",f[i]);
}
return 0;
}
BZOJ2739 : 最远点的更多相关文章
- [BZOJ2739]最远点(DP+分治+决策单调性)
根据旋转卡壳,当逆时针遍历点时,相应的最远点也逆时针转动,满足决策单调性.于是倍长成链,分治优化DP即可,复杂度O(n^2). #include<cstdio> #include<a ...
- BZOJ2739 最远点(分治 + 决策单调性)
2739: 最远点 Time Limit: 20 Sec Memory Limit: 256 MB Description 给你一个N个点的凸多边形,求离每一个点最远的点. Input 本题有多组数据 ...
- 2019.02.21 bzoj2739: 最远点(决策单调性+分治)
传送门 题意简述:给一个N个点的凸多边形,求离每一个点最远的点. 思路:先根据初中数学知识证明决策是满足单调性的,然后上分治优化即可. 才不是因为博主懒得写二分+栈优化呢 代码: #include&l ...
- STM32F412应用开发笔记之四:与远红外炭氢传感器通讯
远红外炭氢传感器是在多组分气体传感器中用来检测甲烷和丙烷浓度的,采用单总线串行通讯,TTL电平.所以我们需要用到UART口来实现与远红外炭氢传感器的通讯. 远红外传感器就是这个样子的: 再来一张进气和 ...
- UVALive 4728 Squares (平面最远点对)
题意:n个平行于坐标轴的正方形,求出最远点对的平方 题解:首先求出凸包,可以证明最远点对一定是凸包上的点对,接着可以证明最远点对(每个点的对踵点)一定只有3*n/2对 接着使用旋转卡壳找到最远点对,但 ...
- bzoj 2739 最远点
Description 给你一个N个点的凸多边形,求离每一个点最远的点. Input 本题有多组数据,第一行一个数T,表示数据组数. 每组数据第一行一个数N,表示凸多边形点的个数,接下来N对数,依次表 ...
- CQOI 2016 k远点对
题目大意:n个点,求第k远的点对的距离 KD树裸题 注意要用堆维护第k远 #include<bits/stdc++.h> #define ll unsigned long long #de ...
- BZOJ4520 [Cqoi2016]K远点对
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- 黄聪:远程序桌面登录的.NET(C#)开发
MSTSCLib.dll和MsTscAxWrapper.dll下载:LibDll.rar 远程序桌面登录的.NET开发,可以使用MSTSCLib.dll和MsTscAxWrapper.dll两个转换过 ...
随机推荐
- iATKOS v7硬盘安装教程(硬盘助手+变色龙安装版)
这是作者:Tong 写的一篇安装教程 首先感谢:wowpc制作的变色龙安装版.iATKOS作者以及硬盘安装助手作者 前言:现在时代在进步,系统同样也在进步,在以前要在PC上整个Mac是很痛苦的事情,就 ...
- unity3d 截屏
原地址:http://www.cnblogs.com/88999660/archive/2013/01/21/2869747.html void OnGUI(){ if(GUI.Button(new ...
- java获得当前文件路径
第一种: File f = new File(this.getClass().getResource("/").getPath()); System.out.println(f); ...
- 题目1006:ZOJ问题
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:13212 解决:2214 题目描述: 对给定的字符串(只包含'z','o','j'三种字符),判断他是否能AC. 是否AC的规则如下:1. ...
- HDOJ 2544
最短路 Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- 一步步实现Nagios监控linux主机及飞信报警
一步步实现Nagios监控linux主机及飞信报警 上篇文章介绍了在linux主机上架设nagios监控服务,并对windows主机进行服务状态变化的监控,这次我们继续上次内容. 首先实现n ...
- [转]Spring的IOC原理[通俗解释一下]
1. IoC理论的背景我们都知道,在采用面向对象方法设计的软件系统中,它的底层实现都是由N个对象组成的,所有的对象通过彼此的合作,最终实现系统的业务逻辑. 图1:软件系统中耦合的对象 如果我们打开机械 ...
- TFS和VSS的简单对比
概念: TFS:Team Foundation Server(通常记作“TFS”) 是一种为 Microsoft 产品提供 源代码管理. 数据收集. 报告和项目跟踪,而为协作 软件开发 的项目. 可作 ...
- spring事物传播属性
PROPAGATION_REQUIRED Support a current transaction; create a new one if none exists. 支持一个当前事务;如果不存在 ...
- 面向侧面的程序设计AOP-------《三》.Net平台AOP技术概览
本文转载自张逸:晴窗笔记 .Net平台与Java平台相比,由于它至今在服务端仍不具备与unix系统的兼容性,也不具备类似于Java平台下J2EE这样的企业级容器,使得.Net平台在大型的企业级应用上, ...