GPU---并行计算利器
转载请引用:GPU---并行计算利器
源于阿里巴巴CCO《猿来如此》分享
1 GPU是什么
如图1所示,这台PC机与普通PC机不同的是这里插了7张显卡,左下角是显卡,在中间的就是GPU芯片。显卡的处理器称为图形处理器(GPU),它是显卡的“心脏”,与CPU类似,只不过GPU是专为执行复杂的数学和几何计算而设计的。
GPU计算能力非常强悍,举个例子:现在主流的i7处理器的浮点计算能力是主流的英伟达GPU处理器浮点计算能力的1/12。
图1 显卡与GPU
2 为什么GPU计算能力如此强悍?
图2对CPU与GPU中的逻辑架构进行了对比。其中Control是控制器、ALU算术逻辑单元、Cache是cpu内部缓存、DRAM就是内存。可以看到GPU设计者将更多的晶体管用作执行单元,而不是像CPU那样用作复杂的控制单元和缓存。从实际来看,CPU芯片空间的5%是ALU,而GPU空间的40%是ALU。这也是导致GPU计算能力超强的原因。
图2 cpu和gpu硬件逻辑结构对比
那有人讲了,为什么cpu不像gpu那样设计呢,这样计算能力也强悍了!
为什么?CPU要做得很通用。CPU需要同时很好的支持并行和串行操作,需要很强的通用性来处理各种不同的数据类型,同时又要支持复杂通用的逻辑判断,这样会引入大量的分支跳转和中断的处理。这些都使得CPU的内部结构异常复杂,计算单元的比重被降低了。而GPU面对的则是类型高度统一的、相互无依赖的大规模数据和不需要被打断的纯净的计算环境。因此GPU的芯片比CPU芯片简单很多。
举个例子,假设有一堆相同的加减乘除计算任务需要处理,那把这个任务交给一堆(几十个)小学生就可以了,这里小学生类似于GPU的计算单元,而对一些复杂的逻辑推理等问题,比如公式推导、科技文章写作等高度逻辑化的任务,交给小学生显然不合适,这时大学教授更适合,这里的大学教授就是CPU的计算单元了,大学教授当然能处理加减乘除的问题,单个教授计算加减乘除比单个小学生计算速度更快,但是成本显然高很多。
3 GPU编程库
GPU计算能力这么强,被广泛使用!比如挖矿(比特币)、图形图像处理、数值模拟、机器学习算法训练等等,那我们怎么发挥GPU超强的计算能力呢?---编程!
怎么进行GPU编程呢?现在GPU形形色色,比如Nvidia、AMD、Intel都推出了自己的GPU,其中最为流行的就是Nvidia的GPU,其还推出了CUDA并行编程库。然而每个GPU生产公司都推出自己的编程库显然让学习成本上升很多,因此苹果公司就推出了标准OpenCL,说各个生产商都支持我的标准,只要有一套OpenCL的编程库就能对各类型的GPU芯片适用。当然了,OpenCL做到通用不是没有代价的,会带来一定程度的性能损失,在Nvidia的GPU上,CUDA性能明显比OpenCL高出一大截。目前CUDA和OpenCL是最主流的两个GPU编程库。
从编程语言角度看,CUDA和OpenCL都是原生支持C/C++的,其它语言想要访问还有些麻烦,比如Java,需要通过JNI来访问CUDA或者OpenCL。基于JNI,现今有各种Java版本的GPU编程库,比如JCUDA等。另一种思路就是语言还是由java来编写,通过一种工具将java转换成C。
图3 GPU编程库
4 CUDA程序流程
图4 CUDA程序流程
5 实践---以图像处理为例
假设我们有如下图像处理任务,给每个像素值加1。并行方式很简单,为每个像素开一个GPU线程,由其进行加1操作。
图5 例子
图6 核函数
图7 主流程函数
6 GPU加速效果
下图是我实现的基于CUDA的P&D DEM图像预处理算法使用GPU的加速效果,GeForce GT 330是块普通台式机上的显卡,现在价格也就500人民币左右,用它达到了20倍的加速比,Tesla M2075是比较专业的显卡,价格一万左右,用它达到了将近百倍的加速比,这个程序i7 CPU单进程单线程要跑2个小时,而用Tesla M2075 GPU只花了一分多钟就完成计算。
图8 P&D DEM图像预处理算法加速效果
GPU---并行计算利器的更多相关文章
- GPU:并行计算利器
http://blog.jobbole.com/87849/ 首页 最新文章 IT 职场 前端 后端 移动端 数据库 运维 其他技术 - 导航条 - 首页 最新文章 IT 职场 前端 - Ja ...
- [信安Presentation]一种基于GPU并行计算的MD5密码解密方法
-------------------paper--------------------- 一种基于GPU并行计算的MD5密码解密方法 0.abstract1.md5算法概述2.md5安全性分析3.基 ...
- 浅说CPU并行计算与GPU并行计算
最近在学一门课,叫做“C++与并行计算”.要用到多CPU(进程)并行的原理,实现语言是C++的MPI接口.联想到上学期用到CUDA C/C++来做并行计算,就对这两门语言做一个总结,分享下自己关于并行 ...
- 【干货】快速部署微软开源GPU管理利器: OpenPAI
[干货]快速部署微软开源GPU管理利器: OpenPAI 介绍 不管是机器学习的老手,还是入门的新人,都应该装备上尽可能强大的算力.除此之外,还要压榨出硬件的所有潜力来加快模型训练.OpenPAI作为 ...
- 国内云计算的缺失环节: GPU并行计算(转)
[IT时代周刊编者按]云计算特有的优点和巨大的商业前景,让其成为了近年来的IT界最热门词汇之一.当然,这也与中国移动互联网的繁荣紧密相关,它们需要有相应的云计算服务作为支撑.但本文作者祁海江结合自身的 ...
- 科学计算 | Matlab 使用 GPU 并行计算
科学计算 | Matlab 使用 GPU 并行计算 本文转载自: https://sanwen8.cn/p/14bJc10.html Matlab下直接使用GPU并行计算(预告)< ...
- 【并行计算-CUDA开发】浅谈GPU并行计算新趋势
随着GPU的可编程性不断增强,GPU的应用能力已经远远超出了图形渲染任务,利用GPU完成通用计算的研究逐渐活跃起来,将GPU用于图形渲染以外领域的计算成为GPGPU(General Purpose c ...
- 89、tensorflow使用GPU并行计算
''' Created on May 25, 2017 @author: p0079482 ''' # 分布式深度学习模型训练模式 # 在一台机器的多个GPU上并行训练深度学习模型 from date ...
- pytorch利用多个GPU并行计算多gpu
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/Answer3664/article/de ...
- [个人论文]一种基于GPU并行计算的MD5密码解密方法
求轻喷... [顺便get一份LaTeX论文模板....还是XeLaTex好用.珍爱生命远离CJK http://files.cnblogs.com/files/pdev/paper.zip
随机推荐
- form 上传 html 代码
$("#fm").form('submit',{ url: url, onSubmit: function(){ //进行表单验证 $scope.editor.sync(); va ...
- ios 项目引用全局pch文件
1.在项目中新建添加PCH文件 把这些记下来,下次直接粘贴:$(SRCROOT)/工程名/pch文件名
- hdu 5720 Wool
hdu 5720 问题描述 黎明时,Venus为Psyche定下了第二个任务.她要渡过河,收集对岸绵羊身上的金羊毛. 那些绵羊狂野不驯,所以Psyche一直往地上丢树枝来把它们吓走.地上现在有n n ...
- [转]Sql server2005中如何格式化时间日期
) -- mon dd yyyy hh:mmAM (or PM) ) -- mm/dd/yyyy - 10/02/2008 ) -- yyyy.mm.dd -- 2008.10.02 ) -- dd/ ...
- 使用commons-logging和log4j记录日志
一,为什么要使用commons-logging+log4j? commons-logging和log4j都是Apache下的开源项目.commons-logging的目的是为“所有的Java日志实现” ...
- 前端利器:SASS基础与Compass入门
SASS是Syntactically Awesome Stylesheete Sass的缩写,它是css的一个开发工具,提供了很多便利和简单的语法,让css看起来更像是一门语言,这种特性也被称为“cs ...
- xtrabackup工具安装
1.首先从官网上http://www.percona.com/下载较新版本的xtrabackup percona-xtrabackup-2.2.7-5050-Linux-x86_64.tar.gz 2 ...
- Activity的四种启动模式详解
Activity的启动模式在清单文件AndroidManifest.xml中的Activity属性中进行设置: 如:<activity android:name=".MainActiv ...
- 设计模式UML类图基础
1.聚合 聚合(aggregation)表示一种弱的"拥有"关系,体现的是A对象可以包含B对象,但是B对象不是A对象的一部分.如大雁是群居动物,每只大雁都属于一个雁群,一个雁群可以 ...
- du -sg 和df -g 所看的文件系统大小不一致
最近碰到一个问题: df -g 查看内存,发现空间已经满了,但是到对应目录查看,发现只用了一半的空间,感觉还有一半不见了. 经咨询其他人,给了两个解释: 1.fsck :使用Fsck命令修复损坏的分区 ...