radom模块提供了随机生成对象的方法

Help on module random:

NAME
random - Random variable generators. FILE
/usr/local/lib/python2.7/random.py MODULE DOCS
http://docs.python.org/library/random DESCRIPTION
integers
--------
uniform within range sequences
---------
pick random element
pick random sample
generate random permutation distributions on the real line:
------------------------------
uniform
triangular
normal (Gaussian)
lognormal
negative exponential
gamma
beta
pareto
Weibull distributions on the circle (angles 0 to 2pi)
---------------------------------------------
circular uniform
von Mises General notes on the underlying Mersenne Twister core generator: * The period is 2**19937-1.
* It is one of the most extensively tested generators in existence.
* Without a direct way to compute N steps forward, the semantics of
jumpahead(n) are weakened to simply jump to another distant state and rely
on the large period to avoid overlapping sequences.
* The random() method is implemented in C, executes in a single Python step,
and is, therefore, threadsafe. CLASSES
_random.Random(__builtin__.object)
Random
SystemRandom
WichmannHill class Random(_random.Random)
| Random number generator base class used by bound module functions.
|
| Used to instantiate instances of Random to get generators that don't
| share state. Especially useful for multi-threaded programs, creating
| a different instance of Random for each thread, and using the jumpahead()
| method to ensure that the generated sequences seen by each thread don't
| overlap.
|
| Class Random can also be subclassed if you want to use a different basic
| generator of your own devising: in that case, override the following
| methods: random(), seed(), getstate(), setstate() and jumpahead().
| Optionally, implement a getrandbits() method so that randrange() can cover
| arbitrarily large ranges.
|
| Method resolution order:
| Random
| _random.Random
| __builtin__.object
|
| Methods defined here:
|
| __getstate__(self)
|
| __init__(self, x=None)
| Initialize an instance.
|
| Optional argument x controls seeding, as for Random.seed().
|
| __reduce__(self)
|
| __setstate__(self, state)
|
| betavariate(self, alpha, beta)
| Beta distribution.
|
| Conditions on the parameters are alpha > 0 and beta > 0.
| Returned values range between 0 and 1.
|
| choice(self, seq)
| Choose a random element from a non-empty sequence.
|
| expovariate(self, lambd)
| Exponential distribution.
|
| lambd is 1.0 divided by the desired mean. It should be
| nonzero. (The parameter would be called "lambda", but that is
| a reserved word in Python.) Returned values range from 0 to
| positive infinity if lambd is positive, and from negative
| infinity to 0 if lambd is negative.
|
| gammavariate(self, alpha, beta)
| Gamma distribution. Not the gamma function!
|
| Conditions on the parameters are alpha > 0 and beta > 0.
|
| The probability distribution function is:
|
| x ** (alpha - 1) * math.exp(-x / beta)
| pdf(x) = --------------------------------------
| math.gamma(alpha) * beta ** alpha
|
| gauss(self, mu, sigma)
| Gaussian distribution.
|
| mu is the mean, and sigma is the standard deviation. This is
| slightly faster than the normalvariate() function.
|
| Not thread-safe without a lock around calls.
|
| getstate(self)
| Return internal state; can be passed to setstate() later.
|
| jumpahead(self, n)
| Change the internal state to one that is likely far away
| from the current state. This method will not be in Py3.x,
| so it is better to simply reseed.
|
| lognormvariate(self, mu, sigma)
| Log normal distribution.
|
| If you take the natural logarithm of this distribution, you'll get a
| normal distribution with mean mu and standard deviation sigma.
| mu can have any value, and sigma must be greater than zero.
|
| normalvariate(self, mu, sigma)
| Normal distribution.
|
| mu is the mean, and sigma is the standard deviation.
|
| paretovariate(self, alpha)
| Pareto distribution. alpha is the shape parameter.
|
| randint(self, a, b)
| Return random integer in range [a, b], including both end points.
|
| randrange(self, start, stop=None, step=1, _int=<type 'int'>, _maxwidth=9007199254740992L)
| Choose a random item from range(start, stop[, step]).
|
| This fixes the problem with randint() which includes the
| endpoint; in Python this is usually not what you want.
|
| sample(self, population, k)
| Chooses k unique random elements from a population sequence.
|
| Returns a new list containing elements from the population while
| leaving the original population unchanged. The resulting list is
| in selection order so that all sub-slices will also be valid random
| samples. This allows raffle winners (the sample) to be partitioned
| into grand prize and second place winners (the subslices).
|
| Members of the population need not be hashable or unique. If the
| population contains repeats, then each occurrence is a possible
| selection in the sample.
|
| To choose a sample in a range of integers, use xrange as an argument.
| This is especially fast and space efficient for sampling from a
| large population: sample(xrange(10000000), 60)
|
| seed(self, a=None)
| Initialize internal state from hashable object.
|
| None or no argument seeds from current time or from an operating
| system specific randomness source if available.
|
| If a is not None or an int or long, hash(a) is used instead.
|
| setstate(self, state)
| Restore internal state from object returned by getstate().
|
| shuffle(self, x, random=None)
| x, random=random.random -> shuffle list x in place; return None.
|
| Optional arg random is a 0-argument function returning a random
| float in [0.0, 1.0); by default, the standard random.random.
|
| triangular(self, low=0.0, high=1.0, mode=None)
| Triangular distribution.
|
| Continuous distribution bounded by given lower and upper limits,
| and having a given mode value in-between.
|
| http://en.wikipedia.org/wiki/Triangular_distribution
|
| uniform(self, a, b)
| Get a random number in the range [a, b) or [a, b] depending on rounding.
|
| vonmisesvariate(self, mu, kappa)
| Circular data distribution.
|
| mu is the mean angle, expressed in radians between 0 and 2*pi, and
| kappa is the concentration parameter, which must be greater than or
| equal to zero. If kappa is equal to zero, this distribution reduces
| to a uniform random angle over the range 0 to 2*pi.
|
| weibullvariate(self, alpha, beta)
| Weibull distribution.
|
| alpha is the scale parameter and beta is the shape parameter.
|
| ----------------------------------------------------------------------
| Data descriptors defined here:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)
|
| ----------------------------------------------------------------------
| Data and other attributes defined here:
|
| VERSION = 3
|
| ----------------------------------------------------------------------
| Methods inherited from _random.Random:
|
| __getattribute__(...)
| x.__getattribute__('name') <==> x.name
|
| getrandbits(...)
| getrandbits(k) -> x. Generates a long int with k random bits.
|
| random(...)
| random() -> x in the interval [0, 1).
|
| ----------------------------------------------------------------------
| Data and other attributes inherited from _random.Random:
|
| __new__ = <built-in method __new__ of type object>
| T.__new__(S, ...) -> a new object with type S, a subtype of T class SystemRandom(Random)
| Alternate random number generator using sources provided
| by the operating system (such as /dev/urandom on Unix or
| CryptGenRandom on Windows).
|
| Not available on all systems (see os.urandom() for details).
|
| Method resolution order:
| SystemRandom
| Random
| _random.Random
| __builtin__.object
|
| Methods defined here:
|
| getrandbits(self, k)
| getrandbits(k) -> x. Generates a long int with k random bits.
|
| getstate = _notimplemented(self, *args, **kwds)
|
| jumpahead = _stub(self, *args, **kwds)
|
| random(self)
| Get the next random number in the range [0.0, 1.0).
|
| seed = _stub(self, *args, **kwds)
|
| setstate = _notimplemented(self, *args, **kwds)
|
| ----------------------------------------------------------------------
| Methods inherited from Random:
|
| __getstate__(self)
|
| __init__(self, x=None)
| Initialize an instance.
|
| Optional argument x controls seeding, as for Random.seed().
|
| __reduce__(self)
|
| __setstate__(self, state)
|
| betavariate(self, alpha, beta)
| Beta distribution.
|
| Conditions on the parameters are alpha > 0 and beta > 0.
| Returned values range between 0 and 1.
|
| choice(self, seq)
| Choose a random element from a non-empty sequence.
|
| expovariate(self, lambd)
| Exponential distribution.
|
| lambd is 1.0 divided by the desired mean. It should be
| nonzero. (The parameter would be called "lambda", but that is
| a reserved word in Python.) Returned values range from 0 to
| positive infinity if lambd is positive, and from negative
| infinity to 0 if lambd is negative.
|
| gammavariate(self, alpha, beta)
| Gamma distribution. Not the gamma function!
|
| Conditions on the parameters are alpha > 0 and beta > 0.
|
| The probability distribution function is:
|
| x ** (alpha - 1) * math.exp(-x / beta)
| pdf(x) = --------------------------------------
| math.gamma(alpha) * beta ** alpha
|
| gauss(self, mu, sigma)
| Gaussian distribution.
|
| mu is the mean, and sigma is the standard deviation. This is
| slightly faster than the normalvariate() function.
|
| Not thread-safe without a lock around calls.
|
| lognormvariate(self, mu, sigma)
| Log normal distribution.
|
| If you take the natural logarithm of this distribution, you'll get a
| normal distribution with mean mu and standard deviation sigma.
| mu can have any value, and sigma must be greater than zero.
|
| normalvariate(self, mu, sigma)
| Normal distribution.
|
| mu is the mean, and sigma is the standard deviation.
|
| paretovariate(self, alpha)
| Pareto distribution. alpha is the shape parameter.
|
| randint(self, a, b)
| Return random integer in range [a, b], including both end points.
|
| randrange(self, start, stop=None, step=1, _int=<type 'int'>, _maxwidth=9007199254740992L)
| Choose a random item from range(start, stop[, step]).
|
| This fixes the problem with randint() which includes the
| endpoint; in Python this is usually not what you want.
|
| sample(self, population, k)
| Chooses k unique random elements from a population sequence.
|
| Returns a new list containing elements from the population while
| leaving the original population unchanged. The resulting list is
| in selection order so that all sub-slices will also be valid random
| samples. This allows raffle winners (the sample) to be partitioned
| into grand prize and second place winners (the subslices).
|
| Members of the population need not be hashable or unique. If the
| population contains repeats, then each occurrence is a possible
| selection in the sample.
|
| To choose a sample in a range of integers, use xrange as an argument.
| This is especially fast and space efficient for sampling from a
| large population: sample(xrange(10000000), 60)
|
| shuffle(self, x, random=None)
| x, random=random.random -> shuffle list x in place; return None.
|
| Optional arg random is a 0-argument function returning a random
| float in [0.0, 1.0); by default, the standard random.random.
|
| triangular(self, low=0.0, high=1.0, mode=None)
| Triangular distribution.
|
| Continuous distribution bounded by given lower and upper limits,
| and having a given mode value in-between.
|
| http://en.wikipedia.org/wiki/Triangular_distribution
|
| uniform(self, a, b)
| Get a random number in the range [a, b) or [a, b] depending on rounding.
|
| vonmisesvariate(self, mu, kappa)
| Circular data distribution.
|
| mu is the mean angle, expressed in radians between 0 and 2*pi, and
| kappa is the concentration parameter, which must be greater than or
| equal to zero. If kappa is equal to zero, this distribution reduces
| to a uniform random angle over the range 0 to 2*pi.
|
| weibullvariate(self, alpha, beta)
| Weibull distribution.
|
| alpha is the scale parameter and beta is the shape parameter.
|
| ----------------------------------------------------------------------
| Data descriptors inherited from Random:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)
|
| ----------------------------------------------------------------------
| Data and other attributes inherited from Random:
|
| VERSION = 3
|
| ----------------------------------------------------------------------
| Methods inherited from _random.Random:
|
| __getattribute__(...)
| x.__getattribute__('name') <==> x.name
|
| ----------------------------------------------------------------------
| Data and other attributes inherited from _random.Random:
|
| __new__ = <built-in method __new__ of type object>
| T.__new__(S, ...) -> a new object with type S, a subtype of T class WichmannHill(Random)
| Method resolution order:
| WichmannHill
| Random
| _random.Random
| __builtin__.object
|
| Methods defined here:
|
| getstate(self)
| Return internal state; can be passed to setstate() later.
|
| jumpahead(self, n)
| Act as if n calls to random() were made, but quickly.
|
| n is an int, greater than or equal to 0.
|
| Example use: If you have 2 threads and know that each will
| consume no more than a million random numbers, create two Random
| objects r1 and r2, then do
| r2.setstate(r1.getstate())
| r2.jumpahead(1000000)
| Then r1 and r2 will use guaranteed-disjoint segments of the full
| period.
|
| random(self)
| Get the next random number in the range [0.0, 1.0).
|
| seed(self, a=None)
| Initialize internal state from hashable object.
|
| None or no argument seeds from current time or from an operating
| system specific randomness source if available.
|
| If a is not None or an int or long, hash(a) is used instead.
|
| If a is an int or long, a is used directly. Distinct values between
| 0 and 27814431486575L inclusive are guaranteed to yield distinct
| internal states (this guarantee is specific to the default
| Wichmann-Hill generator).
|
| setstate(self, state)
| Restore internal state from object returned by getstate().
|
| whseed(self, a=None)
| Seed from hashable object's hash code.
|
| None or no argument seeds from current time. It is not guaranteed
| that objects with distinct hash codes lead to distinct internal
| states.
|
| This is obsolete, provided for compatibility with the seed routine
| used prior to Python 2.1. Use the .seed() method instead.
|
| ----------------------------------------------------------------------
| Data and other attributes defined here:
|
| VERSION = 1
|
| ----------------------------------------------------------------------
| Methods inherited from Random:
|
| __getstate__(self)
|
| __init__(self, x=None)
| Initialize an instance.
|
| Optional argument x controls seeding, as for Random.seed().
|
| __reduce__(self)
|
| __setstate__(self, state)
|
| betavariate(self, alpha, beta)
| Beta distribution.
|
| Conditions on the parameters are alpha > 0 and beta > 0.
| Returned values range between 0 and 1.
|
| choice(self, seq)
| Choose a random element from a non-empty sequence.
|
| expovariate(self, lambd)
| Exponential distribution.
|
| lambd is 1.0 divided by the desired mean. It should be
| nonzero. (The parameter would be called "lambda", but that is
| a reserved word in Python.) Returned values range from 0 to
| positive infinity if lambd is positive, and from negative
| infinity to 0 if lambd is negative.
|
| gammavariate(self, alpha, beta)
| Gamma distribution. Not the gamma function!
|
| Conditions on the parameters are alpha > 0 and beta > 0.
|
| The probability distribution function is:
|
| x ** (alpha - 1) * math.exp(-x / beta)
| pdf(x) = --------------------------------------
| math.gamma(alpha) * beta ** alpha
|
| gauss(self, mu, sigma)
| Gaussian distribution.
|
| mu is the mean, and sigma is the standard deviation. This is
| slightly faster than the normalvariate() function.
|
| Not thread-safe without a lock around calls.
|
| lognormvariate(self, mu, sigma)
| Log normal distribution.
|
| If you take the natural logarithm of this distribution, you'll get a
| normal distribution with mean mu and standard deviation sigma.
| mu can have any value, and sigma must be greater than zero.
|
| normalvariate(self, mu, sigma)
| Normal distribution.
|
| mu is the mean, and sigma is the standard deviation.
|
| paretovariate(self, alpha)
| Pareto distribution. alpha is the shape parameter.
|
| randint(self, a, b)
| Return random integer in range [a, b], including both end points.
|
| randrange(self, start, stop=None, step=1, _int=<type 'int'>, _maxwidth=9007199254740992L)
| Choose a random item from range(start, stop[, step]).
|
| This fixes the problem with randint() which includes the
| endpoint; in Python this is usually not what you want.
|
| sample(self, population, k)
| Chooses k unique random elements from a population sequence.
|
| Returns a new list containing elements from the population while
| leaving the original population unchanged. The resulting list is
| in selection order so that all sub-slices will also be valid random
| samples. This allows raffle winners (the sample) to be partitioned
| into grand prize and second place winners (the subslices).
|
| Members of the population need not be hashable or unique. If the
| population contains repeats, then each occurrence is a possible
| selection in the sample.
|
| To choose a sample in a range of integers, use xrange as an argument.
| This is especially fast and space efficient for sampling from a
| large population: sample(xrange(10000000), 60)
|
| shuffle(self, x, random=None)
| x, random=random.random -> shuffle list x in place; return None.
|
| Optional arg random is a 0-argument function returning a random
| float in [0.0, 1.0); by default, the standard random.random.
|
| triangular(self, low=0.0, high=1.0, mode=None)
| Triangular distribution.
|
| Continuous distribution bounded by given lower and upper limits,
| and having a given mode value in-between.
|
| http://en.wikipedia.org/wiki/Triangular_distribution
|
| uniform(self, a, b)
| Get a random number in the range [a, b) or [a, b] depending on rounding.
|
| vonmisesvariate(self, mu, kappa)
| Circular data distribution.
|
| mu is the mean angle, expressed in radians between 0 and 2*pi, and
| kappa is the concentration parameter, which must be greater than or
| equal to zero. If kappa is equal to zero, this distribution reduces
| to a uniform random angle over the range 0 to 2*pi.
|
| weibullvariate(self, alpha, beta)
| Weibull distribution.
|
| alpha is the scale parameter and beta is the shape parameter.
|
| ----------------------------------------------------------------------
| Data descriptors inherited from Random:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)
|
| ----------------------------------------------------------------------
| Methods inherited from _random.Random:
|
| __getattribute__(...)
| x.__getattribute__('name') <==> x.name
|
| getrandbits(...)
| getrandbits(k) -> x. Generates a long int with k random bits.
|
| ----------------------------------------------------------------------
| Data and other attributes inherited from _random.Random:
|
| __new__ = <built-in method __new__ of type object>
| T.__new__(S, ...) -> a new object with type S, a subtype of T FUNCTIONS
betavariate(self, alpha, beta) method of Random instance
Beta distribution. Conditions on the parameters are alpha > 0 and beta > 0.
Returned values range between 0 and 1. choice(self, seq) method of Random instance
Choose a random element from a non-empty sequence. expovariate(self, lambd) method of Random instance
Exponential distribution. lambd is 1.0 divided by the desired mean. It should be
nonzero. (The parameter would be called "lambda", but that is
a reserved word in Python.) Returned values range from 0 to
positive infinity if lambd is positive, and from negative
infinity to 0 if lambd is negative. gammavariate(self, alpha, beta) method of Random instance
Gamma distribution. Not the gamma function! Conditions on the parameters are alpha > 0 and beta > 0. The probability distribution function is: x ** (alpha - 1) * math.exp(-x / beta)
pdf(x) = --------------------------------------
math.gamma(alpha) * beta ** alpha gauss(self, mu, sigma) method of Random instance
Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is
slightly faster than the normalvariate() function. Not thread-safe without a lock around calls. getrandbits(...)
getrandbits(k) -> x. Generates a long int with k random bits. getstate(self) method of Random instance
Return internal state; can be passed to setstate() later. jumpahead(self, n) method of Random instance
Change the internal state to one that is likely far away
from the current state. This method will not be in Py3.x,
so it is better to simply reseed. lognormvariate(self, mu, sigma) method of Random instance
Log normal distribution. If you take the natural logarithm of this distribution, you'll get a
normal distribution with mean mu and standard deviation sigma.
mu can have any value, and sigma must be greater than zero. normalvariate(self, mu, sigma) method of Random instance
Normal distribution. mu is the mean, and sigma is the standard deviation. paretovariate(self, alpha) method of Random instance
Pareto distribution. alpha is the shape parameter. randint(self, a, b) method of Random instance
Return random integer in range [a, b], including both end points. random(...)
random() -> x in the interval [0, 1). randrange(self, start, stop=None, step=1, _int=<type 'int'>, _maxwidth=9007199254740992L) method of Random instance
Choose a random item from range(start, stop[, step]). This fixes the problem with randint() which includes the
endpoint; in Python this is usually not what you want. sample(self, population, k) method of Random instance
Chooses k unique random elements from a population sequence. Returns a new list containing elements from the population while
leaving the original population unchanged. The resulting list is
in selection order so that all sub-slices will also be valid random
samples. This allows raffle winners (the sample) to be partitioned
into grand prize and second place winners (the subslices). Members of the population need not be hashable or unique. If the
population contains repeats, then each occurrence is a possible
selection in the sample. To choose a sample in a range of integers, use xrange as an argument.
This is especially fast and space efficient for sampling from a
large population: sample(xrange(10000000), 60) seed(self, a=None) method of Random instance
Initialize internal state from hashable object. None or no argument seeds from current time or from an operating
system specific randomness source if available. If a is not None or an int or long, hash(a) is used instead. setstate(self, state) method of Random instance
Restore internal state from object returned by getstate(). shuffle(self, x, random=None) method of Random instance
x, random=random.random -> shuffle list x in place; return None. Optional arg random is a 0-argument function returning a random
float in [0.0, 1.0); by default, the standard random.random. triangular(self, low=0.0, high=1.0, mode=None) method of Random instance
Triangular distribution. Continuous distribution bounded by given lower and upper limits,
and having a given mode value in-between. http://en.wikipedia.org/wiki/Triangular_distribution uniform(self, a, b) method of Random instance
Get a random number in the range [a, b) or [a, b] depending on rounding. vonmisesvariate(self, mu, kappa) method of Random instance
Circular data distribution. mu is the mean angle, expressed in radians between 0 and 2*pi, and
kappa is the concentration parameter, which must be greater than or
equal to zero. If kappa is equal to zero, this distribution reduces
to a uniform random angle over the range 0 to 2*pi. weibullvariate(self, alpha, beta) method of Random instance
Weibull distribution. alpha is the scale parameter and beta is the shape parameter. DATA
__all__ = ['Random', 'seed', 'random', 'uniform', 'randint', 'choice',...

help(random)

random.random()                        # 随机生成0.0到1.0间的的浮点数
random.randrange(start, stop[, step]) # 随机生成start到stop之间的整数(可以指定步长), start和step不是必须的
random.randint(a, b) # 随机生成a到b之间的整数
random.choice(seq) # 从非空序列seq返回一个随机的元素。如果序列是空的抛出IndexError
random.uniform(a, b) # 生成a到b之间的浮点数, a与b都为整形
random.shuffle(items) # 随机打乱一个序列,是原处修改
random.sample(population, k) # 从一个序列中选k个

练习:

>>> random.random()               # 返回随机浮点数中的范围0.0 <= x < 1.0
0.8600361379435925
>>> random.randrange(90,100,2) # 随机生成90到100之间的数,步长为2
94
>>> random.randint(10,100) # 10到100之间的整数
62
>>> random.choice([10,20,30,40]) # 从一个序列中返回一个元素
10
>>> random.choice('abbacaedffabcde')
'a'
>>> random.uniform(1, 10) # 1,10之间的浮点
6.78650282776282
>> items = ['a','b','c','d','e','f','g'] # 随机打乱一个序列,原处修改
>>> random.shuffle(items)
>>> items
['a', 'g', 'b', 'f', 'd', 'e', 'c']
>>> random.sample([1, 2, 3, 4, 5], 3) # 从一个序列中选3个
[4, 1, 5]
>>> random.randint(122400,500000) # 随机6位数
307770
>>> random.randrange(122400,500000,2) # 随机6位数偶数
426194
>>> [random.randrange(10) for _ in xrange(20)] # 随机生成20个10以内的数字
[8, 0, 9, 5, 2, 7, 0, 2, 7, 6, 9, 4, 5, 3, 2, 5, 3, 8, 7, 4]

随机生成6位大写或小写字母

import string
import random def code(n=6, upper=False):
"""
随机生成n位大写或小写字母组成的验证码, 默认小写6位
parmas n: 随机n位, 默认小写6位
return: str
""" if not isinstance(n, int):
raise TypeError('Must be an integer') if n <= 0:
raise ValueError('Must be greater 0') result = ''.join(random.choice(string.ascii_uppercase) for _ in range(n)) if upper:
return result
else:
return result.lower() if __name__ == '__main__':
print(code()) # ydtwix
print(code(upper=True)) # DWLGRG
print(code(8)) # wkveigga
print(code(8, upper=True)) # TQCOVKUO

Python模块(radom)的更多相关文章

  1. 使用C/C++写Python模块

    最近看开源项目时学习了一下用C/C++写python模块,顺便把学习进行一下总结,废话少说直接开始: 环境:windows.python2.78.VS2010或MingW 1 创建VC工程 (1) 打 ...

  2. Python模块之configpraser

    Python模块之configpraser   一. configpraser简介 用于处理特定格式的文件,其本质还是利用open来操作文件. 配置文件的格式: 使用"[]"内包含 ...

  3. Python模块之"prettytable"

    Python模块之"prettytable" 摘要: Python通过prettytable模块可以将输出内容如表格方式整齐的输出.(对于用Python操作数据库会经常用到) 1. ...

  4. python 学习第五天,python模块

    一,Python的模块导入 1,在写python的模块导入之前,先来讲一些Python中的概念性的问题 (1)模块:用来从逻辑上组织Python代码(变量,函数,类,逻辑:实现一个功能),本质是.py ...

  5. windows下安装python模块

    如何在windows下安装python模块 1. 官网下载安装包,比如(pip : https://pypi.python.org/pypi/pip#downloads) pip-9.0.1.tar. ...

  6. 安装第三方Python模块,增加InfoPi的健壮性

    这3个第三方Python模块是可选的,不安装的话InfoPi也可以运行. 但是如果安装了,会增加InfoPi的健壮性. 目录 1.cchardet    自动检测文本编码 2.lxml    用于解析 ...

  7. Python基础篇【第5篇】: Python模块基础(一)

    模块 简介 在计算机程序的开发过程中,随着程序代码越写越多,在一个文件里代码就会越来越长,越来越不容易维护. 为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文件包含的代码就 ...

  8. python 模块加载

    python 模块加载 本文主要介绍python模块加载的过程. module的组成 所有的module都是由对象和对象之间的关系组成. type和object python中所有的东西都是对象,分为 ...

  9. pycharm安装python模块

    这个工具真的好好,真的很喜欢,它很方便,很漂亮,各种好 pycharm安装python模块:file-setting-搜索project inte OK

随机推荐

  1. HP StorageWorks MSL2024 Tape Libraries - Robotic Error Sub-Codes

    Robotic error sub-codes Mechanical initialization failure 02 Connection to slave robotic failed 03 E ...

  2. eclipse中的项目Java build path (Java创建路径)详解

    1.Source标签页,指定本工程的源码目录和输出目录.Projects标签页,指定本工程所依赖的其他工程.Libraries标签页,指定本工程所需的jar包和class目录等.Order And E ...

  3. adb & adb shell 相关命令

    在Mac上配置adb命令 在Mac OS中使用adb命令时,应进行变量配置,步骤如下: 一.终端中输入 cd ~ 二.输入touch .bash_profile 回车 touch:如果没有,则创建文件 ...

  4. [转]LaTeX处女级入门命令语法集

    1.LaTeX文件的框架如下: \documentclass{article} \begin{document} This is the body of the article \end{docume ...

  5. jq tab

    <div id="outer"> <ul id="tab"> <li class="current">t ...

  6. single-chip microcomputer Microcontroller 单片机 单片微型计算机 微控制器

    https://zh.wikipedia.org/wiki/单片机 单片机,全称单片微型计算机(英语:single-chip microcomputer),又称微控制器(microcontroller ...

  7. P2672 推销员

    贪心,水题 #include <bits/stdc++.h> using namespace std; const int maxn = 1000000; struct house { i ...

  8. Medusa: Gauges for JavaFX

    Medusa: Gauges for JavaFX https://community.oracle.com/docs/DOC-992746

  9. membership 在web.config中配置信息

    <?xml version="1.0" encoding="utf-8"?><configuration> <configSect ...

  10. linqPad帮助你快速学习LINQ

    linqPad http://www.cnblogs.com/li-peng/p/3441729.html http://www.linqpad.net/ Linqer http://www.sqlt ...