可以用三个点简单证明斜率最大的直线两个点!

#include <bits/stdc++.h>
#define MAXN 10010
using namespace std; struct Node{
int x, y, number;
}gg[MAXN]; bool cmp(Node a, Node b){
return a.x<b.x;
} int main(void){
std::ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
int n;
cin >> n;
for(int i=0; i<n; i++){
cin >> gg[i].x >> gg[i].y;
gg[i].number=i+1;
}
sort(gg, gg+n, cmp);
queue<int> node1, node2;
double cnt=0, cc=0;
for(int i=1; i<n; i++){
cnt=(gg[i].y-gg[i-1].y)*1.0/(gg[i].x-gg[i-1].x);
if(cnt>cc){
cc=cnt;
while(!node1.empty()){
node1.pop();
}
while(!node2.empty()){
node2.pop();
}
node1.push(gg[i-1].number);
node2.push(gg[i].number);
}else if(cnt==cc){
node1.push(gg[i-1].number);
node2.push(gg[i].number);
}
}
while(!node1.empty()){
cout << node1.front() << " " << node2.front() << endl;
node1.pop();
node2.pop();
}
return 0;
}

51nod 1100 斜率最大的更多相关文章

  1. 51 Nod 1100 斜率最大

    1100 斜率最大  基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 平面上有N个点,任意2个点确定一条直线,求出所有这些直线中,斜率最大的那条直线 ...

  2. 【51nod 1100】斜率最大

    Description 平面上有N个点,任意2个点确定一条直线,求出所有这些直线中,斜率最大的那条直线所通过的两个点.   (点的编号为1-N,如果有多条直线斜率相等,则输出所有结果,按照点的X轴坐标 ...

  3. 51Nod P1100 斜率最大

    传送门: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1100 由于2 <= N <= 10000, 所以 ...

  4. 51Nod - 1107 斜率小于0的连线数量

    二维平面上N个点之间共有C(n,2)条连线.求这C(n,2)条线中斜率小于0的线的数量. 二维平面上的一个点,根据对应的X Y坐标可以表示为(X,Y).例如:(2,3) (3,4) (1,5) (4, ...

  5. 【51NOD】斜率最大

    [题解]通过画图易得结论:最大斜率一定出现在相邻两点之间. #include<cstdio> #include<algorithm> #include<cstring&g ...

  6. 51nod 1107 斜率小于零连线数量 特调逆序数

    逆序数的神题.... 居然是逆序数 居然用逆序数过的 提示...按照X从小到大排列,之后统计Y的逆序数... 之后,得到的答案就是传说中的解(斜率小于零) #include<bits/stdc+ ...

  7. 51NOD——N 1107 斜率小于0的连线数量

    https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1107 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 ...

  8. 51nod 1451 合法三角形 判斜率去重,时间复杂度O(n^2)

    题目: 这题我WA了3次,那3次是用向量求角度去重算的,不知道错在哪了,不得不换思路. 第4次用斜率去重一次就过了. 注意:n定义成long long,不然求C(3,n)时会溢出. 代码: #incl ...

  9. 51nod 1488 帕斯卡小三角 斜率优化

    思路:斜率优化 提交:\(2\)次 错因:二分写挂 题解: 首先观察可知, 对于点\(f(X,Y)\),一定是由某个点\((1,p)\),先向下走,再向右下走. 并且有个显然的性质,若从\((1,p) ...

随机推荐

  1. 多平台密码绕过及提权工具Kon-Boot的使用与防范

    在单用户的机器上密码可能没那么重要,但是一旦有多个用户可以使用这台机器,密码就显得十分必要了(比如有儿童账户的电脑).所以说为你的电脑增设一条防线的最常用,最简单的方法就是用密码将你的电脑保护起来,但 ...

  2. 数据库(Mysql)背后的数据结构-学习

    来吧,用这三篇文章夯实对Mysql的理解吧. 关于数据库索引及其优化,更多可参见此文:http://www.cnblogs.com/pkuoliver/archive/2011/08/17/mass- ...

  3. 【转】Web Worker javascript多线程编程(一)

    原文:https://www.cnblogs.com/peakleo/p/6218823.html -------------------------------------------------- ...

  4. centos7备份还原与grub2引导和rescue模式修改root密码

    一.centos7备份1.su -2.cd /3.tar -zpPcvf backup.tgz --exclude=/sys --exclude=/mnt --exclude=/proc --excl ...

  5. VB6 如何连接MYSQL数据库

    1 从官网下载MYSQL的ODBC,选择与自己操作系统对应的版本(前提是你安装了MYSQL) http://dev.mysql.com/downloads/connector/odbc/   2 安装 ...

  6. stl 之set图解

    使用set或multiset之前,必须增加头文件<set> Set.multiset都是集合类,区别在与set中不同意有反复元素,multiset中同意有反复元素. sets和multis ...

  7. Unity UGUI——概述、长处

    Unity4.6推出的新UI系统 长处:灵活.高速.可视化.效率高效果好.易于使用和扩展

  8. 【Mongodb教程 第四课 】MongoDB 创建集合

    reateCollection() 方法 MongoDB db.createCollection(name, options) 是用来创建集合. 语法: 基本的 createCollection()  ...

  9. qt之旅-1纯手写Qt界面

    通过手写qt代码来认识qt程序的构成,以及特性.设计一个查找对话框.以下是设计过程 1 新建一个empty qt project 2 配置pro文件 HEADERS += \ Find.h QT += ...

  10. jQuery的AJax异步訪问

    用一个样例用以说明:点击button,将input内用户输入的数据发送给服务端.并将结果返回给页面. 首先是html承载内容: <!DOCTYPE html> <html> & ...