POJ1264 SCUD Busters 凸包
有m个国家(m<=20)对每个国家给定n个城镇 这个国家的围墙是保证围住n个城镇的周长最短的多边形 必然是凸包
进行若干次导弹发射 落到一个国家内则国家被破坏
最后回答总共有多少面积被破坏
首先求凸包
然后判断点是否在凸包内 要用O(logn)的判断方法 不然会超时
这道题常数卡的有点紧 TLE三次才过
蒟蒻没救了 2017年做1991年的题还被卡常数
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std; const double eps=1e-9; int cmp(double x)
{
if(fabs(x)<eps)return 0;
if(x>0)return 1;
else return -1;
} const double pi=acos(-1.0); inline double sqr(double x)
{
return x*x;
} struct point
{
double x,y;
point (){}
point (double a,double b):x(a),y(b){}
void input()
{
scanf("%lf%lf",&x,&y);
}
friend point operator +(const point &a,const point &b)
{
return point(a.x+b.x,a.y+b.y);
}
friend point operator -(const point &a,const point &b)
{
return point(a.x-b.x,a.y-b.y);
}
friend bool operator ==(const point &a,const point &b)
{
return cmp(a.x-b.x)==0&&cmp(a.y-b.y)==0;
}
friend point operator *(const point &a,const double &b)
{
return point(a.x*b,a.y*b);
}
friend point operator*(const double &a,const point &b)
{
return point(a*b.x,a*b.y);
}
friend point operator /(const point &a,const double &b)
{
return point(a.x/b,a.y/b);
}
double norm()
{
return sqrt(sqr(x)+sqr(y));
}
}; struct line
{
point a,b;
line(){};
line(point x,point y):a(x),b(y)
{ }
};
double det(const point &a,const point &b)
{
return a.x*b.y-a.y*b.x;
} double dot(const point &a,const point &b)
{
return a.x*b.x+a.y*b.y;
} double dist(const point &a,const point &b)
{
return (a-b).norm();
} point rotate_point(const point &p,double A)
{
double tx=p.x,ty=p.y;
return point(tx*cos(A)-ty*sin(A),tx*sin(A)+ty*cos(A));
} bool parallel(line a,line b)
{
return !cmp(det(a.a-a.b,b.a-b.b));
} bool line_joined(line a,line b,point &res)
{
if(parallel(a,b))return false;
double s1=det(a.a-b.a,b.b-b.a);
double s2=det(a.b-b.a,b.b-b.a);
res=(s1*a.b-s2*a.a)/(s1-s2);
return true;
} bool pointonSegment(point p,point s,point t)
{
return cmp(det(p-s,t-s))==0&&cmp(dot(p-s,p-t))<=0;
} void PointProjLine(const point p,const point s,const point t,point &cp)
{
double r=dot((t-s),(p-s))/dot(t-s,t-s);
cp=s+r*(t-s);
} struct polygon_convex
{
vector<point>P;
polygon_convex(int Size=0)
{
P.resize(Size);
}
}; bool comp_less(const point &a,const point &b)
{
return cmp(a.x-b.x)<0||cmp(a.x-b.x)==0&&cmp(a.y-b.y)<0; } polygon_convex convex_hull(vector<point> a)
{
polygon_convex res(2*a.size()+5);
sort(a.begin(),a.end(),comp_less);
a.erase(unique(a.begin(),a.end()),a.end());//删去重复点
int m=0;
for(int i=0;i<a.size();i++)
{
while(m>1&&cmp(det(res.P[m-1]-res.P[m-2],a[i]-res.P[m-2]))<=0)--m;
res.P[m++]=a[i];
}
int k=m;
for(int i=int(a.size())-2;i>=0;--i)
{
while(m>k&&cmp(det(res.P[m-1]-res.P[m-2],a[i]-res.P[m-2]))<=0)--m;
res.P[m++]=a[i];
}
res.P.resize(m);
if(a.size()>1)res.P.resize(m-1);
return res;
} bool is_convex(vector<point> &a)
{
for(int i=0;i<a.size();i++)
{
int i1=(i+1)%int(a.size());
int i2=(i+2)%int(a.size());
int i3=(i+3)%int(a.size());
if((cmp(det(a[i1]-a[i],a[i2]-a[i1]))*cmp(det(a[i2]-a[i1],a[i3]-a[i2])))<0)
return false;
}
return true;
}
int containO(const polygon_convex &a,const point &b)
{
int n=a.P.size();
point g=(a.P[0]+a.P[n/3]+a.P[2*n/3])/3.0;
int l=0,r=n;
while(l+1<r)
{
int mid=(l+r)/2;
if(cmp(det(a.P[l]-g,a.P[mid]-g))>0)
{
if(cmp(det(a.P[l]-g,b-g))>=0&&cmp(det(a.P[mid]-g,b-g))<0)r=mid;
else l=mid;
}else
{
if(cmp(det(a.P[l]-g,b-g))<0&&cmp(det(a.P[mid]-g,b-g))>=0)l=mid;
else r=mid;
}
}
r%=n;
int z=cmp(det(a.P[r]-b,a.P[l]-b))-1;
if(z==-2)return 1;
return z;
} polygon_convex pc[30];
double area(int n)
{
double ans=0;
vector<point>a;
a.clear();
for(int i=0;i<pc[n].P.size();i++)
a.push_back(pc[n].P[i]);
a.push_back(a[0]);
for(int i=0;i<a.size()-1;i++)ans+=det(a[i+1],a[i]);
//cout<<ans/2<<endl;
return ans/2.0;
} int tot;
double are[30]; vector<point> pp;
int shoot[600][600];
bool damed[30];
int main()
{//freopen("t.txt","r",stdin);
int n;
tot=1;
while(scanf("%d",&n)&&n!=-1)
{
pp.clear();
for(int i=0;i<n;i++)
{
point p;
p.input();
pp.push_back(p);
}
pc[tot]=convex_hull(pp);
//cout<<pc[tot].P.size()<<endl;
are[tot]=area(tot);
//cout<<are[tot]<<endl;
tot++;
}
int x,y;
memset(damed,0,sizeof(damed));
int sum=0;
memset(shoot,0,sizeof(shoot));
while(scanf("%d%d",&x,&y)!=EOF)
{
if(sum==tot-1)break;
if(shoot[x][y]==0)
{
for(int i=1;i<tot;i++)
if(containO(pc[i],point(x,y)))
{
shoot[x][y]=i;
break;
}
}
if(!damed[shoot[x][y]]){sum++;damed[shoot[x][y]]=1;}
}
double tarea=0;
for(int i=1;i<tot;i++)
{
//cout<<are[i]<<endl;
if(damed[i])tarea+=are[i];
}
printf("%.2lf\n",-tarea+0.0005);
return 0;
}
POJ1264 SCUD Busters 凸包的更多相关文章
- UVa 109 - SCUD Busters(凸包计算)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
- [poj1113][Wall] (水平序+graham算法 求凸包)
Description Once upon a time there was a greedy King who ordered his chief Architect to build a wall ...
- ZOJ 3871 Convex Hull(计算几何、凸包)
题意:给n个点,|x[i]|,|y[i]| <= 1e9.求在所有情况下的子集下(子集点数>=3),凸包的面积和. 这题主要有几个方面,一个是凸包的面积,可以直接用线段的有向面积和求得,这 ...
- UVALive 2453 Wall (凸包)
题意:给你一个多边形的城堡(多个点),使用最短周长的城墙将这个城堡围起来并保证城墙的每个点到城堡上的每个点的距离都不小于l 题解:因为两点间的直线一定比折线短,所以这样做 先使用所有点求得一个凸包,接 ...
- UVA 11168 Airport(凸包+直线方程)
题意:给你n[1,10000]个点,求出一条直线,让所有的点都在都在直线的一侧并且到直线的距离总和最小,输出最小平均值(最小值除以点数) 题解:根据题意可以知道任意角度画一条直线(所有点都在一边),然 ...
- 关于2016.12.12——T1的反思:凸包的意义与应用
2016.12.12 T1 给n个圆,保证圆圆相离,求将圆围起来的最小周长.n<=100 就像上图.考场上,我就想用切线的角度来做凸包.以圆心x,y排序,像点凸包一样,不过用两圆之间的下切线角度 ...
- poj1228--稳定凸包
题目大意:给你一个凸包上的某些点(可能在凸包内),询问是否能确定这个凸包. 思路:先求出题目给出的点的凸包,看看在凸包的每条边内(不包括端点)有没有点,若有,则这条边是确定的,若没有,则这条边不确定, ...
- POJ 2225 / ZOJ 1438 / UVA 1438 Asteroids --三维凸包,求多面体重心
题意: 两个凸多面体,可以任意摆放,最多贴着,问他们重心的最短距离. 解法: 由于给出的是凸多面体,先构出两个三维凸包,再求其重心,求重心仿照求三角形重心的方式,然后再求两个多面体的重心到每个多面体的 ...
- HDU 4946 Area of Mushroom(构造凸包)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4946 题目大意:在一个平面上有n个点p1,p2,p3,p4....pn,每个点可以以v的速度在平面上移 ...
随机推荐
- 常用的四种设计模式 PHP代码
// 工厂模式 interface Iuser { public function getUserName(); } class UserFactory { static public functio ...
- windows下mysql 5.7版本中修改编码为utf-8的方法
方法如下 首先通过 show variables like 'character_set_%';查看mysql字符集情 默认编码为 latin1 然后关闭数据库 在mysql安装目录下找到my.ini ...
- Qt——信号与槽用法总结(未完待续)
1.设计模式中信号与槽编辑选项卡 2.右键组件,转到槽,写函数 void LoginDialog::on_loginBtn_clicked() { accept(); } 3.信号与槽编辑模式 按下F ...
- 动态规划之最长公共子序列(LCS)
在字符串S中按照其先后顺序依次取出若干个字符,并讲它们排列成一个新的字符串,这个字符串就被称为原字符串的子串 有两个字符串S1和S2,求一个最长公共子串,即求字符串 ...
- bzoj3304[Shoi2005]带限制的最长公共子序列 DP
题意:给出三个序列,求出前两个的公共子序列,且包含第三个序列,要求长度最长. 这道题目怎么做呢,f[i][j]表示a串1-i,b串1-j的最长,g[i][j]表示a串i-n,b串j-m最长, 那么只需 ...
- Codeforces908G. New Year and Original Order
给n<=10^700,问1到n中每个数在各数位排序后得到的数的和.答案膜1e9+7. 一看就是数位DP啦..然而并没有什么思路.. 可以尝试统计n(i,j)表示数j在第i位的出现次数,知道了这个 ...
- 「CodePlus 2017 12 月赛」火锅盛宴
n<=100000种食物,给每个食物煮熟时间,有q<=500000个操作:在某时刻插入某个食物:查询熟食中编号最小的并删除之:查询是否有编号为id的食物,如果有查询是否有编号为id的熟食, ...
- 【周期性执行事件】MySQL事件(Event)&任务调度
1.事件简介 事件(event)是MySQL在相应的时刻调用的过程式数据库对象.一个事件可调用一次,也可周期性的启动,它由一个特定的线程来管理的,也就是所谓的“事件调度器”. 事件和触发器类似,都是在 ...
- ZOJ 4016 Mergeable Stack 链表
Mergeable Stack Time Limit: 2 Seconds Memory Limit: 65536 KB Given initially empty stacks, the ...
- [HDU5709]Claris Loves Painting(动态开点线段树+合并)
题意:有n(<=1e5)个点的树,每个点都有颜色(颜色可能重复),有m(<=1e5)个询问,每次询问(x,d)问在x的子树中,与x的距离不超过d的节点有多少种不同的颜色.强制要求在线. 分 ...