POJ1264

有m个国家(m<=20)对每个国家给定n个城镇 这个国家的围墙是保证围住n个城镇的周长最短的多边形 必然是凸包

进行若干次导弹发射 落到一个国家内则国家被破坏

最后回答总共有多少面积被破坏

首先求凸包

然后判断点是否在凸包内 要用O(logn)的判断方法 不然会超时

这道题常数卡的有点紧 TLE三次才过

蒟蒻没救了 2017年做1991年的题还被卡常数

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std; const double eps=1e-9; int cmp(double x)
{
if(fabs(x)<eps)return 0;
if(x>0)return 1;
else return -1;
} const double pi=acos(-1.0); inline double sqr(double x)
{
return x*x;
} struct point
{
double x,y;
point (){}
point (double a,double b):x(a),y(b){}
void input()
{
scanf("%lf%lf",&x,&y);
}
friend point operator +(const point &a,const point &b)
{
return point(a.x+b.x,a.y+b.y);
}
friend point operator -(const point &a,const point &b)
{
return point(a.x-b.x,a.y-b.y);
}
friend bool operator ==(const point &a,const point &b)
{
return cmp(a.x-b.x)==0&&cmp(a.y-b.y)==0;
}
friend point operator *(const point &a,const double &b)
{
return point(a.x*b,a.y*b);
}
friend point operator*(const double &a,const point &b)
{
return point(a*b.x,a*b.y);
}
friend point operator /(const point &a,const double &b)
{
return point(a.x/b,a.y/b);
}
double norm()
{
return sqrt(sqr(x)+sqr(y));
}
}; struct line
{
point a,b;
line(){};
line(point x,point y):a(x),b(y)
{ }
};
double det(const point &a,const point &b)
{
return a.x*b.y-a.y*b.x;
} double dot(const point &a,const point &b)
{
return a.x*b.x+a.y*b.y;
} double dist(const point &a,const point &b)
{
return (a-b).norm();
} point rotate_point(const point &p,double A)
{
double tx=p.x,ty=p.y;
return point(tx*cos(A)-ty*sin(A),tx*sin(A)+ty*cos(A));
} bool parallel(line a,line b)
{
return !cmp(det(a.a-a.b,b.a-b.b));
} bool line_joined(line a,line b,point &res)
{
if(parallel(a,b))return false;
double s1=det(a.a-b.a,b.b-b.a);
double s2=det(a.b-b.a,b.b-b.a);
res=(s1*a.b-s2*a.a)/(s1-s2);
return true;
} bool pointonSegment(point p,point s,point t)
{
return cmp(det(p-s,t-s))==0&&cmp(dot(p-s,p-t))<=0;
} void PointProjLine(const point p,const point s,const point t,point &cp)
{
double r=dot((t-s),(p-s))/dot(t-s,t-s);
cp=s+r*(t-s);
} struct polygon_convex
{
vector<point>P;
polygon_convex(int Size=0)
{
P.resize(Size);
}
}; bool comp_less(const point &a,const point &b)
{
return cmp(a.x-b.x)<0||cmp(a.x-b.x)==0&&cmp(a.y-b.y)<0; } polygon_convex convex_hull(vector<point> a)
{
polygon_convex res(2*a.size()+5);
sort(a.begin(),a.end(),comp_less);
a.erase(unique(a.begin(),a.end()),a.end());//删去重复点
int m=0;
for(int i=0;i<a.size();i++)
{
while(m>1&&cmp(det(res.P[m-1]-res.P[m-2],a[i]-res.P[m-2]))<=0)--m;
res.P[m++]=a[i];
}
int k=m;
for(int i=int(a.size())-2;i>=0;--i)
{
while(m>k&&cmp(det(res.P[m-1]-res.P[m-2],a[i]-res.P[m-2]))<=0)--m;
res.P[m++]=a[i];
}
res.P.resize(m);
if(a.size()>1)res.P.resize(m-1);
return res;
} bool is_convex(vector<point> &a)
{
for(int i=0;i<a.size();i++)
{
int i1=(i+1)%int(a.size());
int i2=(i+2)%int(a.size());
int i3=(i+3)%int(a.size());
if((cmp(det(a[i1]-a[i],a[i2]-a[i1]))*cmp(det(a[i2]-a[i1],a[i3]-a[i2])))<0)
return false;
}
return true;
}
int containO(const polygon_convex &a,const point &b)
{
int n=a.P.size();
point g=(a.P[0]+a.P[n/3]+a.P[2*n/3])/3.0;
int l=0,r=n;
while(l+1<r)
{
int mid=(l+r)/2;
if(cmp(det(a.P[l]-g,a.P[mid]-g))>0)
{
if(cmp(det(a.P[l]-g,b-g))>=0&&cmp(det(a.P[mid]-g,b-g))<0)r=mid;
else l=mid;
}else
{
if(cmp(det(a.P[l]-g,b-g))<0&&cmp(det(a.P[mid]-g,b-g))>=0)l=mid;
else r=mid;
}
}
r%=n;
int z=cmp(det(a.P[r]-b,a.P[l]-b))-1;
if(z==-2)return 1;
return z;
} polygon_convex pc[30];
double area(int n)
{
double ans=0;
vector<point>a;
a.clear();
for(int i=0;i<pc[n].P.size();i++)
a.push_back(pc[n].P[i]);
a.push_back(a[0]);
for(int i=0;i<a.size()-1;i++)ans+=det(a[i+1],a[i]);
//cout<<ans/2<<endl;
return ans/2.0;
} int tot;
double are[30]; vector<point> pp;
int shoot[600][600];
bool damed[30];
int main()
{//freopen("t.txt","r",stdin);
int n;
tot=1;
while(scanf("%d",&n)&&n!=-1)
{
pp.clear();
for(int i=0;i<n;i++)
{
point p;
p.input();
pp.push_back(p);
}
pc[tot]=convex_hull(pp);
//cout<<pc[tot].P.size()<<endl;
are[tot]=area(tot);
//cout<<are[tot]<<endl;
tot++;
}
int x,y;
memset(damed,0,sizeof(damed));
int sum=0;
memset(shoot,0,sizeof(shoot));
while(scanf("%d%d",&x,&y)!=EOF)
{
if(sum==tot-1)break;
if(shoot[x][y]==0)
{
for(int i=1;i<tot;i++)
if(containO(pc[i],point(x,y)))
{
shoot[x][y]=i;
break;
}
}
if(!damed[shoot[x][y]]){sum++;damed[shoot[x][y]]=1;}
}
double tarea=0;
for(int i=1;i<tot;i++)
{
//cout<<are[i]<<endl;
if(damed[i])tarea+=are[i];
}
printf("%.2lf\n",-tarea+0.0005);
return 0;
}

  

POJ1264 SCUD Busters 凸包的更多相关文章

  1. UVa 109 - SCUD Busters(凸包计算)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  2. [poj1113][Wall] (水平序+graham算法 求凸包)

    Description Once upon a time there was a greedy King who ordered his chief Architect to build a wall ...

  3. ZOJ 3871 Convex Hull(计算几何、凸包)

    题意:给n个点,|x[i]|,|y[i]| <= 1e9.求在所有情况下的子集下(子集点数>=3),凸包的面积和. 这题主要有几个方面,一个是凸包的面积,可以直接用线段的有向面积和求得,这 ...

  4. UVALive 2453 Wall (凸包)

    题意:给你一个多边形的城堡(多个点),使用最短周长的城墙将这个城堡围起来并保证城墙的每个点到城堡上的每个点的距离都不小于l 题解:因为两点间的直线一定比折线短,所以这样做 先使用所有点求得一个凸包,接 ...

  5. UVA 11168 Airport(凸包+直线方程)

    题意:给你n[1,10000]个点,求出一条直线,让所有的点都在都在直线的一侧并且到直线的距离总和最小,输出最小平均值(最小值除以点数) 题解:根据题意可以知道任意角度画一条直线(所有点都在一边),然 ...

  6. 关于2016.12.12——T1的反思:凸包的意义与应用

    2016.12.12 T1 给n个圆,保证圆圆相离,求将圆围起来的最小周长.n<=100 就像上图.考场上,我就想用切线的角度来做凸包.以圆心x,y排序,像点凸包一样,不过用两圆之间的下切线角度 ...

  7. poj1228--稳定凸包

    题目大意:给你一个凸包上的某些点(可能在凸包内),询问是否能确定这个凸包. 思路:先求出题目给出的点的凸包,看看在凸包的每条边内(不包括端点)有没有点,若有,则这条边是确定的,若没有,则这条边不确定, ...

  8. POJ 2225 / ZOJ 1438 / UVA 1438 Asteroids --三维凸包,求多面体重心

    题意: 两个凸多面体,可以任意摆放,最多贴着,问他们重心的最短距离. 解法: 由于给出的是凸多面体,先构出两个三维凸包,再求其重心,求重心仿照求三角形重心的方式,然后再求两个多面体的重心到每个多面体的 ...

  9. HDU 4946 Area of Mushroom(构造凸包)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4946 题目大意:在一个平面上有n个点p1,p2,p3,p4....pn,每个点可以以v的速度在平面上移 ...

随机推荐

  1. insert,extend

    #insert s = ['8','9','sfd',('45','00'),{'01':'56'}] s0 = [] while 1 : extend = input("请输入要添加的内容 ...

  2. JavaWeb 项目,更改本地文件需刷新才有效问题 (tomcat相关)

    问题 如果JavaWeb项目需要读取实时更新的本地文件内容,可能遇到必须在更新后手动refresh才能有效的问题. 原因 这是由于项目实际上是运行在Tomcat中,而非本地的工作目录.eclipse可 ...

  3. HDU 5492 Find a path

    Find a path Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ID ...

  4. TestNG 练习

    java文件 package selniumhomework; import org.testng.annotations.Test; public class Test1 { @Test(group ...

  5. [TJOI2010]中位数

    题目描述 给定一个由N个元素组成的整数序列,现在有两种操作: 1 add a 在该序列的最后添加一个整数a,组成长度为N + 1的整数序列 2 mid 输出当前序列的中位数 中位数是指将一个序列按照从 ...

  6. 【BZOJ2142】礼物(扩展lucas定理,中国剩余定理合并方程)

    题意:有n件礼物,m个人,每个人分别需要w[i]件礼物,求分礼物的不同方案数 mod P 提示:设P=p1^c1 * p2^c2 * p3^c3 * … *pt ^ ct,pi为质数. 1≤n≤10^ ...

  7. 【SGU194&ZOJ2314】Reactor Cooling(有上下界的网络流)

    题意: 给n个点,及m根pipe,每根pipe用来流躺液体的,单向的,每时每刻每根pipe流进来的物质要等于流出去的物质,要使得m条pipe组成一个循环体,里面流躺物质. 并且满足每根pipe一定的流 ...

  8. Spring Cloud(6):Zuul的基本使用

    网关:API Gateway 系统对外唯一入口,介于客户端和服务端之间,处理非业务功能 提供路由请求,鉴权,监控,缓存,限流等功能 简单理解:小区门卫,防止非法人员入内,居民也可以问路 实际理解:假设 ...

  9. 洛谷 P2033 Chessboard Dance

    P2033 Chessboard Dance 题目描述 在棋盘上跳舞是件有意思的事情.现在给你一张国际象棋棋盘和棋盘上的一些子以及你的初始位置和方向.求按一定操作后,棋盘的状态. 操作有四种,描述如下 ...

  10. 奥多朗WIFI 插座

    https://aoduolang.tmall.com/category-1089563810.htm?spm=a1z10.1-b.w11212542-12917613245.12.tTWFSc&am ...